{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FFT_Example_data_with_window

# FFT_Example_data_with_window - Example Problem Generating...

This preview shows pages 1–2. Sign up to view the full content.

Example Problem - Generating an FFT from a time signal - including windows J. M. Cimbala Answers: Useful number of data points for FFT: Given: 256 100 Hz Calculations for the frequency spectrum: 3 s 50 Hz The data points are provided below from an experiment. 0.39 Hz 128 Frequency spectrum: See Plot below. Summary about the input signal: 0.46 V 15.6 Hz 1.79 V 46.9 Hz 0.72 V Calculated values: DC = mean value of input signal = 0.4540 volts (average of all the useful input data) 300 256 2.56 s 0.01 Hz 0.39 Hz 50 128 Frequency Spectrum: (also divide first one by 2, and add back the DC value) frequency (Hz) 0 0.000 -1.7527 0 -2.2067 0 0 -0.50315551210155 0.46 1 0.010 -0.5650 0.39 -1.0190 0 0 0.255239484675561-1.44005553334218E-002i 0 2 0.020 0.8801 0.78 0.4261 0 0 -7.76383520072323E-003+1.97186040257435E-002i 0 3 0.030 3.1924 1.17 2.7384 0 0 -4.77206890926481E-003-9.00947987812182E-003i 0 4 0.040 1.2804 1.56 0.8264 0 0 8.94397199299433E-003+4.6398488703775E-003i 0 5 0.050 0.9006 1.95 0.4466 0 0 -7.625940404E-003+3.19708858117488E-003i 0 6 0.060 -2.5214 2.34 -2.9754 0.01 -0.02 3.2332905736084E-002-1.50365761001296E-003i 0 7 0.070 -0.4022 2.73 -0.8562 0.01 -0.01 -3.7466315313763E-002-3.10360773236548E-002i 0 8 0.080 -0.5707 3.13 -1.0247 0.01 -0.01 7.88264087543479E-003+3.46369883642316E-002i 0 9 0.090 3.2201 3.52 2.7661 0.01 0.03 3.35940007579051E-003-1.22673131637587E-002i 0 10 0.100 1.6182 3.91 1.1642 0.01 0.02 7.05476835049565E-003+1.75568281354845E-002i 0 11 0.110 1.6789 4.3 1.2249 0.02 0.02 -2.70535057392308E-002-2.61735615253077E-002i 0 12 0.120 -1.6800 4.69 -2.1340 0.02 -0.05 2.91556747126038E-002+1.28772322275302E-002i 0 13 0.130 -1.2799 5.08 -1.7339 0.03 -0.04 -1.45307213195953E-002-1.66941747572471E-003i 0 14 0.140 -0.6754 5.47 -1.1294 0.03 -0.03 9.85750112550036E-004+1.72181037387782E-002i 0 15 0.150 1.6577 5.86 1.2037 0.03 0.04 1.74654914666632E-002-2.81921894958201E-002i 0 16 0.160 2.8238 6.25 2.3698 0.04 0.09 -3.17427308096476E-002+8.93643772104044E-003i 0 17 0.170 1.3445 6.64 0.8905 0.04 0.04 1.07479807652269E-004+6.6854200995464E-003i 0 18 0.180 0.2188 7.03 -0.2352 0.05 -0.01 2.62823383690665E-002-8.55593579319265E-003i 0 19 0.190 -2.4080 7.42 -2.8620 0.05 -0.15 -3.05550464049493E-002+9.94209197515098E-003i 0 20 0.200 -0.3065 7.81 -0.7605 0.06 -0.04 1.56197832849833E-002+1.94825876097873E-003i 0 21 0.210 -0.1269 8.2 -0.5809 0.06 -0.04 -1.61671990069486E-003-1.70549763019173E-002i 0 22 0.220 3.4371 8.59 2.9831 0.07 0.21 -1.96182706309876E-002+2.54014121468286E-002i 0 23 0.230 1.3243 8.98 0.8703 0.08 0.07 4.24240023381379E-002-1.76080892116027E-002i 0 24 0.240 1.4993 9.38 1.0453 0.08 0.09 -4.66701019348527E-002-1.08292385684645E-002i 0 25 0.250 -2.2204 9.77 -2.6744 0.09 -0.24 2.64370828428918E-002+2.77830114842836E-002i 0 26 0.260 -0.8385 10.16 -1.2925 0.1 -0.13 -9.36904478246288E-003-8.61130181348074E-003i 0 27 0.270 -0.7018 10.55 -1.1558 0.11 -0.12 -2.40795877594664E-002-3.28476977244172E-003i 0 28 0.280 2.3923 10.94 1.9383 0.11 0.22 2.1994674106765E-002+6.76995487475133E-003i 0 29 0.290 2.3541 11.33 1.9001 0.12 0.23 -2.91958319467153E-002-7.85366356044334E-003i 0 30 0.300 1.4472 11.72 0.9932 0.13 0.13 4.75207550090926E-003+2.40311075128391E-002i 0 31 0.310 -0.5389 12.11 -0.9929 0.14 -0.14 -5.77783706203459E-003-4.60248210139838E-002i 0 32 0.320 -2.0954 12.5 -2.5494 0.15 -0.37 -4.47573549954556E-002+4.17468631709641E-002i 0 33 0.330 -0.3373 12.89 -0.7913 0.16 -0.12 -1.39307293698942E-003+8.58091923857509E-003i 0 34 0.340 0.4861 13.28 0.0321 0.16 0.01 -5.0392501623855E-002-1.73806778365439E-003i 0 35 0.350 3.4043 13.67 2.9503 0.17 0.51 -0.101443826725748+2.50027830840298E-002i 0 36 0.360 1.1702 14.06 0.7162 0.18 0.13 -0.125883666283133-7.31658041148201E-004i 0 37 0.370 1.1327 14.45 0.6787 0.19 0.13 -0.390479569335504+0.107902459812318i 0.01 38 0.380 -2.5331 14.84 -2.9871 0.2 -0.6 -1.65065469431809+0.342761744049556i 0.02 39 0.390 -0.4727 15.23 -0.9267 0.21 -0.2 75.6051933798702-15.4303498448109i 0.98 40 0.400 -0.5956 15.63 -1.0496 0.22 -0.23 -137.586329124979+28.0505311730327i 1.79 41 0.410 2.9921 16.02 2.5381 0.23 0.59 62.4003014115217-12.7116692087143i 0.81 42 0.420 1.8784 16.41 1.4244 0.24 0.35 1.31012306259834-0.257677610212755i 0.02 43 0.430 1.5123 16.8 1.0583 0.25 0.27 0.334847157319583-0.109794128323887i 0 44 0.440 -1.2921 17.19 -1.7461 0.26 -0.46 0.146710439083681+2.58884464787161E-002i 0 45 0.450 -1.6372 17.58 -2.0912 0.28 -0.58 4.20036247964484E-002-4.31943254263914E-002i 0 46 0.460 -0.4200 17.97 -0.8740 0.29 -0.25 4.34565333097129E-002-2.05611331106323E-002i 0 47 0.470 1.2142 18.36 0.7602 0.3 0.23 4.9722720391448E-002-2.69713781920067E-003i 0 48 0.480 3.1516 18.75 2.6976 0.31 0.83 1.74156934229801E-002+7.5164364510498E-003i 0 49 0.490 1.1361 19.14 0.6821 0.32 0.22 1.68019784911801E-003+1.06023933800854E-003i 0 50 0.500 0.5830 19.53 0.1290 0.33 0.04 6.66606239392722E-004-1.31552748754942E-002i 0 51 0.510 -2.5788 19.92 -3.0328 0.34 -1.04 3.77448558621438E-002+3.04620964957392E-002i 0 52 0.520 -0.2479 20.31 -0.7019 0.35 -0.25 -3.06718829715886E-002-3.52268901436459E-002i 0 53 0.530 -0.2993 20.7 -0.7533 0.37 -0.28 2.0305511689949E-002+5.46790033305413E-003i 0 54 0.540 3.3843 21.09 2.9303 0.38 1.11 -1.60054637318944E-002+4.5941399698822E-003i 0 55 0.550 1.4647 21.48 1.0107 0.39 0.39 2.55908346197432E-002-1.08995322472634E-002i 0 56 0.560 1.4632 21.88 1.0092 0.4 0.41 -1.51975673985388E-003+1.49311619460452E-002i 0 57 0.570 -1.9404 22.27 -2.3944 0.41 -0.99 5.55619066419713E-003-1.86451785159896E-002i 0 58 0.580 -1.1379 22.66 -1.5919 0.43 -0.68 -2.12103919476283E-002+1.81471943293718E-002i 0 59 0.590 -0.5031

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}