stat400lec37 - Statistics 400 Section 8.5 Contingency...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Statistics 400 Section 8.5 Contingency Tables h×k Contingency Table Group 1 2 k 1 Y11 Y21 Yk1 2 Y12 Y22 Yk2 h Y1h Y2h Ykh 2×k contingency table Group 1 2 k 1 Y11 Y21 Yk1 2 Y12 Y22 Yk2 Test whether two multinomial distributions are equal Two sets of independent random variables have the following multinomial distributions. The joint pmf of 11 21 1 , ,..., k Y Y Y is 1 11 21 1 11 21 1 11 21 1 11 21 1 ! ( , ,..., ) ... ! !... ! k y y y k k k n f y y y p p p y y y = The joint pmf of 12 22 2 , ,..., k Y Y Y is 2 12 22 2 12 22 2 12 22 2 12 22 2 ! ( , ,..., ) ... ! !... ! k y y y k k k n f y y y p p p y y y = 2 2 2 11 1 11 21 1 21 1 1 1 1 11 1 21 1 1 ( ) ( ) ( ) ... k k k Y n p Y n p Y n p n p n p n p - - - + + + + 2 2 2 12 2 12 22 2 22 2 2 2 2 12 2 22 2 2 ( ) ( ) ( ) ... k k k Y n p Y n p Y n p n p n p n p - - - + + + ~ Ping Ma Lecture 37 Fall 2005 - 1 -
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Test the hypothesis H0: p i1 =p i2 i=1,2,…,k Ha: at least one of p i1 ≠p i2 Test statistic 2 2 2 11 1 11 12 1 2 21 1
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/24/2008 for the course STAT 400 taught by Professor Tba during the Fall '05 term at University of Illinois at Urbana–Champaign.

Page1 / 6

stat400lec37 - Statistics 400 Section 8.5 Contingency...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online