Math 41 Section 9.2

Math 41 Section 9.2 - 9.2 The Law of Sines- If none of the...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9.2 The Law of Sines- If none of the angles in a triangle are a right angle, the triangle is called oblique . An oblique triangle will have either three acute angles or two acute angles and one obtuse angle. Solving Oblique Triangles Need to know: Case 1: One side and two angles (ASA or SAA) Case 2: Two sides and the angle opposite of one of them are known (SSA) Case 3: Two sides and the included angle are known (SAS) Case 4: Three sides are known (SSS) Law of Sines For a triangle with sides a, b, c and opposite angles A, B, C, respectively, sinAa = = sinBb sinCc A + B + C = 180 o Example 1: Using the Law of Sines to Solve a SAA Triangle Solve the triangle: A = 40 o , B = 60 o , a = 4 Solution: The third angle is found using A + B + C = 180 A + B + C = 180 40 + 60 + C = 180 C = 80 Now we use the law of sines twice to find the unknown sides b and c. ((sin 40) / 4) = ((sin 60) / b) ((sin 40) / 4) = ((sin 80) / c) b = ((4 sin 60) / sin 40) = 5.39 c = ((4 sin 80) / sin 40) = 6.13- SSA, which applies to triangles for which two sides and the angle opposite one of them are known, is...
View Full Document

Page1 / 2

Math 41 Section 9.2 - 9.2 The Law of Sines- If none of the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online