N1114 - NAME PID ii iii iv ME 391 FALL 2007 EXAM 2 WEDNESDAY LoLLFHOhLX‘ Note There are 4 questions with two parts each Use of calculators is not

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: NAME: PID ii. iii. iv. ME 391: FALL 2007 EXAM 2: WEDNESDAY NOV 14, 2007 LoLLFHOhLX‘ Note: There are 4 questions with two parts each. Use of calculators is not allowed. Only one page (8.5 ” X 11 ”, both sides) of notes is allowed. Please show your work in clear and logical steps in order to get partial credit. 1. (a). (10 points) Find the values of k for which the following matrix is singular k k k A: 3 2 k k 2 k A "b L42 9317va J MLA/r o g k. K K K 7— K C27C2_Cl LL 0 o ‘————> C}->(?—C[ 3 “I 16—} : o k 2~k a g) k [0 — Q40 (w; 1:0 IL (IL—'1) Uta?) >0 '9 LL: 0, 21/? Au 1 (b). (20 points) For k=1, find the inverse of A using any method of your choice. R\-7‘K("(R2 ' O F! ‘2 I o (LL—9 _{LL 0 I 2 3 ¥( 0 2. (a). (13 points) Determine all the eigenvalues of B =[ E—I‘WW/Q‘ASV M9 WW 5] “‘10 CFWMW; o lg”/l1:—l=0 =9 ’Z—A F2 .3 7- lvl Lr :o “l 2 (A fl,~—>€,+K3 v———~—~> ~3”/l o ~3~A “L l—/\ L5. :0 “l 2 «A ég‘fl) | o i 2 lP/I L1 :0 -1 z -,\ C39C3"C‘ l 0 0 Z l”) 30 a1 (-3—rl):o —-l 2 \——,\ ‘9 Qf/UZ’Lr=O 2 /l=-,7 l—V‘Zil 2/13"3 —2 —2 —3 2 1 4 —1 2 2 (b). (12 points) Determine the eigenvector of B corresponding to A=3. To fiwWKe egg/cam «f E 28/53] w (New W2 WG-11 kw ) 0F Few (T331) EH? - 2"}? —’Z ——5 o z x»; ‘4- 0 «5 —Z --3 0 K. H (2} I "Z 3 o (ll—aflz—QR: l ~—r—> {9'9 (if-SK. o 2 -2 D o \7. 47- 0 ~6Z (124K? 1 ‘ '_'Z ((3 o 0 0 '2 o 0 o o o (Zrfififlflz \ o t 0 LL( 1:0 ((2-91;le 0 2) ' 4 ° M249, :0 0 0 o D M FOAM k} 14}: 1—9 k.:—1sz:l 3. (a) (10 points) Given a=xf+yj+zlé,13=f+2j+312, a=3§+41€, 34+} Fonn a system of 3 linear equations in the components of ii i.e. x,y,z, using the following facts: 5.}; =1, compafi = 2, Jam = —13 n r\ A , / ——) n 52Xl4jj+‘ZKJEZL4ZJ+}QJC"3€+Lrfijc;-Fltdj gay—J =) X+ Zy+§z=l "‘7 F) A 61;? ~ . - Camp? —J a QC ’2. 5 EX-t-H‘Zzlc) F2) d‘WX'CY): l l o X : l o o 7 Z (fig—ct x ny 3 0 Lf 7 3 ~; Lt 3. (b) (20 points) Solve the system formed in part (a) using Gaussian elimination. Thus, find 21'. “La—lgfl'l _ ___) i 2 3 [ a—\ ((3 *3 {23 O ‘ 5/6 3/5 o I 5% ’3/L. ((3—3 Ry—R? I {2— 3 I o 1 5/6 “7/6 0 o 5/12 5/17. l1 (5—? ER? ‘ 2 3 ‘ O \ 5/6 ‘7/6 0 0 I ' (ZCF EGCLLSt/Erhhvt? 2:! S - a 74'6Z_ Z ay__§_gzflz 4. (a) (13 points) The current in a single loop L—R circuit is given by L— + Ki 2 E (t) where L=l h, R=1 S2, E(t) is the periodic Saw-tooth function given by the following figure: If i(0)=0, solve the above differential equation for current i using Laplace Transforms. 4. (b) (2 points) Find the value of the current at t=4 3. Given: I{f’(r)}=sHs)—f(0), 1‘11}=—:-, I{r}=s—12 fie‘s’flt}: F (s—a) 1‘:{f(t—a)u(t—a)}= e‘“ F(s) T For a periodic function f( t) with period T, I{f(t)}= 1 1_ST Ie‘“ f (t)dt For e“, s>0 1 1%. =l+efl+e'2‘”+e‘3“+e"“+ ...... .. —e Lt (a) , Lari: ZEOc} Lu] (x. at / J ” T5 5Q T/Lm fm 0 g, rising—M) + LIU) :iéECfijj QM )ICc) : :13 tact/j 1(5) z {CCU} S4\ 1 EW ~_ I ’, f ] beam/QH—t oLt l . — El BQQC :|_I___r[*cg_si) __ (He'jtdtj “ (N775) "Q 0 o —: PM?) l [,eJ’FJ‘ “It/l] .— (re—a5 S 5 PS 0 L ‘ "EL: ~.L(2-S~l) \~€'—; 5 5'2 _r -J‘ _, ' F .1. _ (2‘I 7. y SCI-24} 6 1(5): | _ 0"; §2(HI) STJ—H) (1424/ -———L—’-’ : A 4 4. ___C_‘ Saga) 5 51 5+! \—_ ArCmI) +‘?(J'H)—FC§L 5‘7; A+CZO ->) SI: A+E : D 9) A1”! 5°: 9:! 31(r4l) 5 5 5+1 ' z .L- \_ 50"”) 5 5—” 919‘): ~J~+JE+.L ._ .L__L Q—r 5 S :H 5 J; ~ l+o:’°+Q“ZI+Q—7x+ Q~“9_+ , I—QJ I(J—)Z —% 4— L1 4- ‘_ L _ i Q~; ([+Q‘;+Q_'Zf+ Q'_?I4Q 5 5*! 5 3+1 P __ -S .2; ,2 _L( 5 s y ‘7 5+) "‘5 ~7—J‘ r?r h 4- .8.— + Q A 2 +Q- f+gffwr 5“ $41 54‘ :4: $4! ’ r 47 w 2%; w r— » +06” 227% We 3;")? «*6 if?) + W :17] ( —S‘f + I Q-f— p c I I I § 3*. 4 : .4 + k 'EQ—t P u H—I) rum—21 HARP}; Au (kw ,LMJJKW + Q—(’°")u(lc~r) ¢Q-CJ‘”2/u(+~'z) reveal (6—3) + 2'06”) uH;—Lr) + e“ “UFJLWQ‘JJrr H. 00 (Jpn CG): ~‘4E‘FQ‘6 - ifhe’ jquthJ )\':.| CH ka (75 (H h 66+): ~1+L++IL‘L' « i I» o: ’ mph) 71": C 3 “2—” _ m _ (“HUM (w; » ("e“”“Z//u(e~2/ J94) ,me )u(£r3)—(»Pe‘“‘“‘u MH—Lr) , (1r KW”) «40—51 5 3'+Q”” —-(!~ Q“ 2 fl).— (W~ 9"}(b; - O~Qffl)a/ ,0 ~20) 0/ — c9- 10 ...
View Full Document

This note was uploaded on 07/25/2008 for the course ME 391 taught by Professor Blazer-adams during the Fall '08 term at Michigan State University.

Page1 / 10

N1114 - NAME PID ii iii iv ME 391 FALL 2007 EXAM 2 WEDNESDAY LoLLFHOhLX‘ Note There are 4 questions with two parts each Use of calculators is not

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online