N0905 - / ME 3‘“ 0‘1 tan/QQ _, fig; CLASS NOTES...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: / ME 3‘“ 0‘1 tan/QQ _, fig; CLASS NOTES [5514,92 We «VA/\faq 97! {1‘42 LN‘K 97.7. '5) 0th: ~am 37L AJC 91—,Rj an? d _ GM (MCFSW) TUL =J GM:+§R :1 “av 313.7“ 917. Q14: W V1491 WC 017E “1 an index Vow 0“ n M” of; 13: 91 Z. ’L A+ hLKJ VLVO :) v11” yflL—I—C L — Tr) C=ch__ K : 9K LOB/l 5) v2 ,zfif +23} ,(72 2. 71 l V 7900 l l 0 ~ 0 +Vo . ._(7K LOB/2. Luz/j CHAPTER 2 : FIRST — ORDER DIFFERENTIAL EQUATIONS 2.3 Linear Equations Standard Form: dy/dx + P(x) y = f(x) Solution Method: Integrating Factor approach 1. Find Integrating Factor (IF) 2. Multiply equation by IF. and integrate both sides EN? W oh‘ffwufl 52%” be,“ a. x) al A C (11% Meow/Vim) ,0) fo’vwx ‘ a +PCX)\ , W /~ >0 «2) Assam y 5 UL 6 Sum 07L +00% ytyc+yp (mow/\Q >IC {5 a Jae-«WM 075 M anaemia; QW2m 51‘an QWFo-vx (3) Q vm‘oA/QQ &PM,UULQ Can #MyCLOZ/L' -——+ y ,9 031; ,PijoLx J 2v” {Pawn +£«q _ PC) yZCQ/ you '5le Va’ua/Efm O'F gash {Ana 0 t: bk Jack M ypl y) CK) 1} Ct 36W 07L Subs/Uh;th Y? I?“ (2) W PM 74M % L4. (Nat W H>flc+79 3W7 MW) .3 PCXJOK ) Q; x7 ; C+/Q/PLX)OLX fax) o/Lx DiffM/h‘ahz [Pen cu [PQ‘JoLX \ 0L (2, : C IKE }] 2 2C X) ijuuotx , + PM) QfPLxJOuy : QfPijoquX/ Pm .‘ a}: + may 2 foj on LOB/5 I": : QfPC/(Jckx 2~ W9} :‘F jpmokxok fPCXQoLx [pend Q .Q_ : X 9% + j 2 f—Cx/ hwy LHJ‘ 03 CL fflHoLx ' f/ch) okx l; [a y] _ Q by f? CX) Ax /? Ci) at; :9 Q )1: C+/JL )CCXJOlX _ [Pmdx -chxJOLx PC 294 m j : CQ + $2 2/ X K/ijAx EM“ x a: +Zu >Sx AK 0le Q. (L z 5 11* 3? 2 flow a % 1+:fo if” a: « 2h)“ “LACIE ; M30” {QAsz : mer" 3 I~F 3K1 '2 x N 0L“: 2M 2 QCS” C 0M+ ,x— j Y J XrLU.‘ 5L}.+ C 3 : U:Sx S. J 3+ x1 WNW. at: :5 — 3.9 w okx 3 x3 1 L‘H'5,% S 2,; ,Sx‘_2_g_ Z 535+£ 3 7(3), ’3— 7g 1 [3 X1] 42. \4 X 3 5X1, 6. +‘f_’_2<1+ ’3 x 3 K .1sz 2344‘; EXawVp/Qe 2._. F4224»? bud), “MM Gun. msljiamca bV 5—34 0 caeHw‘ w m) “i 0 Am d“? «Anion? LOB/6 pvt hf 2'“ v — g; .2“ 4 c b .3f 0" V: C9. + “:2 b T a C=Vo’“i ‘9 2+ '9 V: (0*MJ)Q'M *3}: T b “2* _:+ V67): \IOCL M+(\—Q.M)\N_:cz b h£ L 03/7 L02 /3 2.3 Exact Equations Definition: A first order differential equation of the form M(x,y)dx+N(x,y)dy=0 is an exact differential equation if the expression M(x,y)dx+N(x,y)dy is an exact differential of a function f(x). Theorem: A necessary and sufficient condition that M(x,y)dx+N(x,y)dy be an exact differential is zigzag 3y ax Spaqi-CL C952 2 x 3‘3 +51 0Ler Li Xyzc xd/‘qyotx .3 0w. J;an ou‘f/WJGQQ o7C y 0+7; like QCvxr-eJGom Y dy+y&¥:o i) an QAKGU“ W041 Gm: La 2.; KW JZ:CL£OLX+ Qid ex A), J «H ()y TR») MW ‘27 {Cw/kc ,wkdk 52% W sea/WM *6 ~ Lo (WM MCX,y)oL><+ NijyJolj :0 ~69 3/? 1% Mex, )zcfi W ch,):# W \m‘ y &X j J}— ./ (2W .3 Qxaut. W’tu W 73 g 0,)(fjfi 4 7€A 3y ax MGR 91E: MLY/y) M £;Ncéyj a« 6} O '9 I 7 ~ "' P3 I \ Gel L ) ‘ ‘ C¥j % £24K ‘ swing/"hm w Cit-HM“ 29'.) v PJWGM W C ‘ am, :wa) filly) LC .3 a ram 01" We give)“ Eflouwp/qe : =) 7L;>(j+y " o‘ll -\—p\e 0L2. a xy+y :Q \5 a S‘dQui-D’K ...
View Full Document

This note was uploaded on 07/25/2008 for the course ME 391 taught by Professor Blazer-adams during the Fall '08 term at Michigan State University.

Page1 / 10

N0905 - / ME 3‘“ 0‘1 tan/QQ _, fig; CLASS NOTES...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online