chapter20i_PC - Chapter 20 Direct Current Circuits Sources...

Info icon This preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
    Chapter 20 Direct Current Circuits
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Sources of emf The source that maintains the current in a  closed circuit is called a source of  emf Any devices that increase the potential energy of  charges circulating in circuits are sources of emf Examples include batteries and generators SI units are Volts The emf is the work done per unit charge
Image of page 2
    emf and Internal Resistance A real battery has  some internal  resistance Therefore, the  terminal voltage is  not equal to the emf
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    More About Internal  Resistance The schematic shows  the internal resistance, r The terminal voltage is  Δ V = V b -V a Δ V =   – Ir ε For the entire circuit,    ε = IR + Ir
Image of page 4
    Internal Resistance and emf,  cont  is equal to the terminal voltage when  ε the current is zero Also called the  open-circuit voltage R is called the  load resistance The current depends on both the  resistance external to the battery and  the internal resistance
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Internal Resistance and emf,  final When R >> r, r can be ignored Generally assumed in problems Power relationship ε  = I 2  R + I 2  r When R >> r, most of the power  delivered by the battery is  transferred to the load resistor
Image of page 6
    Resistors in Series When two or more resistors are connected  end-to-end, they are said to be in  series The current is the same in all resistors  because any charge that flows through one  resistor flows through the other The sum of the potential differences across  the resistors is equal to the total potential  difference across the combination
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Resistors in Series, cont Potentials add Δ V = IR 1  + IR 2  = I (R 1 +R 2 ) Consequence of  Conservation of Energy The equivalent  resistance has the  effect on the circuit as  the original combination  of resistors
Image of page 8
    Equivalent Resistance –  Series R eq  = R 1  + R 2  + R 3  + … The equivalent resistance of a  series combination of resistors is  the algebraic sum of the individual  resistances and is always greater  than any of the individual resistors
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Equivalent Resistance –  Series: An Example Four resistors are replaced with their  equivalent resistance
Image of page 10
    Resistors in Parallel The potential difference across each resistor  is the same because each is connected  directly across the battery terminals The current, I, that enters a point must be  equal to the total current leaving that point I = I 1  + I 2 The currents are generally not the same Consequence of Conservation of Charge
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Equivalent Resistance – 
Image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern