# Sec 3.2(poppers)done - Math 1313 Section 3.2 Section 3.2...

• 12
• 100% (1) 1 out of 1 people found this document helpful

This preview shows page 1 - 2 out of 12 pages.

Math 1313 Section 3.2 Section 3.2: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section 1.3, you can solve a system of linear equations in two variables easily by applying the substitution or addition method. Since these methods become tedious when solving a large system of equations, a suitable technique for solving such systems of linear equations will consist of Row Operations. The sequence of operations on a system of linear equations are referred to equivalent systems, which have the same solution set. Row Operations 1. Interchange any two rows. 53131221RR3125312. Replace any row by a nonzero constant multiple of itself. 8243122241RR22113123. Replace any row by the sum of that row and a constant multiple of any other row. 312531221RRR2+770531Row Reduced Form An m x n augmented matrix is in row-reduced form if it satisfies the following conditions: 1. Each row consisting entirely of zeros lies below any other row having nonzero entries. 210000301the correct row-reduced form 0002103012. The first nonzero entry in each row is 1 (called a leading 1).
• • • 