135B Midterm 2007

# 135B Midterm 2007 - 135B Midterm Avérage 76.35 Problem 1...

• Notes
• 24

This preview shows pages 1–24. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 135B Midterm Avérage 76.35 Problem 1 ; 26.13 Problem 2 ; 17.58 Problem 3 ; 21.63 Problem 4 ; 11.03 I 00-96 95-91 90-86 85-8] 80-76 75 -7 I 70-66 65-6 I 6'0— Total Zoo-had N-hCOG) 40 CEE 135B xam February 14, 2007 a L. P. Felton Use the displacement method of analysis for problems 1-3. (3 O) 1.'~'All bars of the truss shown have the same value of EA except for bar CD, which is deﬁned as axially rigid. There are vertical forces F applied at joints B and D, as shown. Write down all matrices required to ﬁnd the bar forces using an exact (not approximate) formulation. Solve for the force in bar CD. (20) 2. The two forces F are removed from the truss in Problem 1, but the support at C moves horizontally to the right a known small distance 60. Write down all matrices required to ﬁnd the bar forces. Do not solve. ” (30) 3. The frame structure below is composed of four axially rigid beams and is symmetric about a vertical axis through C. There is a horizontal force F applied at joint C, and forces F applied perpendicular to beams BC and CD, as shoWn. Note the directions of these forces. Use symmetry to analyze half the structure and write down all matrices required to ﬁnd the beam end moments on that half of the structure. Do not solve. F F .9 1 ’. E / le— 412 Luz—q (20) 4. Analysis of the structure in Problem 3 leads to an end moment MAB = -3.0649F£ (counterclockwise). Use this information to ﬁnd a_ll end forces on each of the four beams. Sketch free body diagrams of all beams and of joint C showing magnitudes of Q forces acting on each free body. ‘1; M?" QED/g VF“ ’1 fix ’1: AA} 0 W7; \Mq qué F AC 0 0 \$3 w "/5 I 92:] i ’ O a?) 7‘ [3&2 V 0 “3 \$33 _ a0, \$2 :55,» ¥ M — AD Pa) 9 ‘NL 50> \ 5? Pg; [Ca DBC/ 0' P, - 9—. r. 3 “KM £53m :éﬁgﬁpmﬁeﬁw mm? r, ‘L 6D :: —E_+—O.(gfé>: \P C F 3 ED : — \A’ﬁ‘zg? Nokc Cog/Mitre; awvmx.ma,4a éfﬁwkérvx 019+ ,' 3 % o ( g“; 0 0 o o l i— V,2— -l O EK/ZL O O 0 AF \ I3: 0 ;_ K: o 0 0 o E: \$ _ a E I 1‘2 \ W52 O O l O O ‘ O i 1 0 , \o o o o I ' _ 0 116667711 \ 3.37151. 0 _ —1 _ EA k _ u 73570239. J k ' c 71Q692L ‘ 2.18381E‘L _ EA —O.436762F\ 0.”??"5‘14 _ 3.63968FL \ ‘—/d—‘:\L‘t— —O.l85728 F _ EA - -.2 26‘ . _ _ u— [_ 15,8567”) A— _‘__5_‘b_E_L_ P_ 1.26266E‘ EA 0. E21 3.63968FL \—O.606614F 3E“ . o o g 5L 0 O 0 O _ _l_ _ 1 l O 9; O O O V? V? V? 3 Vs L 0 ELI“. [3 = 1 0 0 K = 0 O T O 0 F = —E‘ _ 1 1 zoom/'2' EA ‘F V2 0 o o o ‘ 3v; 0 EA 0 o 1 o o o o p; lﬂg 633A _ 1176.395}. _ 0 1178515?- 3 7601351. 0 160034 L "I L L L EA E111 k _ _ 11'? SEER 1178.63 " __ 0 117351'“ k—i _ O “600’4 1. 0 760781. 0 " J. L L ‘ EA EA _ 0 117351 SF _ " 11755133; 0.3565183? 0 502511. 0 5027231; 3 L L L \ ET: ‘33 —O.436791 F ‘v —O.185646 F u: —~ A: — P: _ 3. I _ 3.960678763FL —l.59986E‘ 9.6399254 \V—O.6O6654F, 3% add—Lax } W“? D @ Hcﬂé‘é \ P POP : 0‘ OW? ﬂga/K we, °D LUZ CW Aw (Kawjyméw ow ébféﬁ’EéiiWng'L ‘5‘53Cw4'0‘ru 04 M (LAO—T, Ev'é 7x253 5am“- 50 0 {\$6 2 0 m4, : Sb Untitled—4 ProblemZ: O \ _ "ﬂ _ 5 _ k-1 TK _ —O.25126860\ I33- 1 115% 5‘) u” '(B' ‘ﬂs'u‘)‘(—1.244650 I O 0 5.0305213“, ‘—O.15076153‘ {'———L—i 0 359815 5, 0.08489935A6Q A=[3.u+[33.us= 0.1199385D p: 9.119958m59 0' O. ‘0‘251268 5'0 _ 0.04187792Ao'9 135B W07 Exam1.1&2.nb Problem 2, approximate solution (reference only): o o 3— 5 .._1__ __1_ J— 2 2 V? I’M—7) = B= 1 o o ; _-1_ L o «J? «[2- 0 0 1 E o o o o 51. 0 EA 0 o o 3‘\/Z_I. In[2}.-= K: 0 0 5:;- 0 0 5041on 0 0 0 T— 0 EA 0 0 0 0 E In[3]:= k = Transpose[B] .K.B; MatrixForm[N[k]] 1179.63EA _ 1178.39EA _ 0.1178518A L L L _ 1178.39EA 1178.63EA _ 0.117551EA L L L _ 0.117851EA _ 0.117851m 0.3565185A L L L In[4] .-= kinv = Inverse [k] ; MatrixFonn [N [kinv] ] 0.760135L 0.760034L 0.50251L EA EA EA 0.760034); 0.76078L 0.5027231. EA EA EA 0.50251L 0.5027231. 3.1372L - EA EA EA ( l l 0 o In[5]:= Bs: 0 , 1/Sqrt[2] s o In[6]:= Matrix‘E'orm[Bs] Ou C [5] //Ma tri xForm= O O O 1 3 V O mg’71:= us = (60 ); In[8]:= u = —kinv. (Transpose[B] .K.Bs.us); ~43! 135B WO7 Exam]. I&2.rzb Inz'9} : = MatrixForm[N[u]] Out[9]//Ma triXForm= 0.119932 (50 [—0.880017 60 —O.251255 60 In[10j:= A = B.u+Bs.us; In!11]:= MatrixForm[N[A]] Out[ll]//MatrixForm= —0.150753 60 0.359797 60 0.119932 60 0. 0000359797 60 —0.251255 60 In[12]:= P =K.A; MatrixForm [N [P] ] 0.0301506 EAéo L 0 .0848049 EArSO L 0 . 119932 EAéo L 0.0848049 EAéO L _ 0.0418758 EAéD L AW; Ox 0 ’Vl'f gbaé‘r ’_ ‘3 ~0 'qu {JR/Z} ’Aaa ’ Q E? avg )5”? g9 4 £9 U} a F MO ﬂy 9 c f L 9: (MEL £3 + N m -* “:9” \w * "’7 my, ABC Héé-‘AQ {k F ‘ /\ s. L D 9: ~ Mgﬁgﬁ (“ﬂ/U (5%) [email protected] O:VI\MLB.ABC+ Wank : A bu} /Q—> 5’1 I \$9 MO»; 2‘21? Untitled—2 1 0 0 ‘TL 1 3: l 0 _4L 1 0 O O l O 1.831 0.4m L L _ 0.431 0.8EI 1“ L L _o.3;2551 O_ 3.45969FL2 EI u: _2.65577E‘L2 EI 12.7861E‘L3 EI D1 H m blH Fl ooN _ 0.37531 L2 0. O. 1875 EI L3 ' EI ——2L 0 O o 0 o o A o 0 O 4 E1 231 P = _ 10 FL F = '5'? SL 27 E 20 FL 10 231 4 RI 0 T *5T 27 1.17647L __ 0.588235L 2.35294 L2 BI EI 51 k—1 = _ 0.588235L 1.544121, _ 1.1754713 E1 El E1 2.35294 L2 _ 1.17647 LE 10.0392L3 BI EI EI _ _ 3.19651FL2 a: ~3. 06492 FL 2 #016331” P -l.33508 FL 3.45969 FLZ _ 1.33508 FL E‘.I _ 2.65577E‘L2 0' EI E / x QMM‘ l2 Qeﬁmé ﬁll; AEEQAM ‘ "The bar LP TC 1253712! . "7 TM W” CD only Cm YoTa‘fe M —> I s dmdhm Es res/Femoliculw Ty ﬁw {w GD AAA = + M» M» U 3 E i E i i i z 1 i z i i i g i I i 3: C W m __ M W A m m , I y . M .M was_§§i§§i N _ . A! if a / ILF . o __ ,,,,,,,,,,,,,,,, ; (1332;545:3323 = M A s. M a CI V W M A A 35A» A 0 k _ w M \esz; 2 {ix A [*7 ,I: 5% WW» wlisii‘ésiséii‘szllie/ V. m M a, y, w. m risigm ,,,,,,,,, i,m_§..Maa.M. D, 155i: C M n. W F F— a m , .F l _ .d \1! [TD “W W; W ,,_, 7 .,, .....i A l I; /_ru hum .. a . Y I y (2%,. W M .M MAI _ W0], .Wn! V .om ._ . w W M. (\ (Illllllux. Ella vagiiugiggigij -Mr. s p M w, w 0M ﬂu D; P! DI: W C! Cr P1.nb H Probleml ** < 3 Matrix > 3/5 c 0 4/15 ,3: 1 o *1.0 1/5 1 o o {{0.6, O}, {0, —0.707107}, {1., 0}, {0.707107, 1.}, {0, 0}} < KMatrix > 1/5 0 o 0 0 o 1 o 0 0 K=EA/L* o 0 1/6 0 0 o o o 1/3/V3 0 o o o o 1000 “51:, o, o, o, o}, {0, %, 0, 0, 0}, {0, O, o, o}, {0, o, 0, high, 0}, {0, 0, o. o, 1005MH M1 = (Transpose[B] .K.;3) 0.356518 EA 0.166667 EA 0.166667 EA 0.735702 EA {{—T——' —““L—*}' {*—L“' —T“—}} u = Inverse [M1] .Fm 3.63968 FL 1.78567 FL {{‘T}' {TH A=B.u 2.18381 FL 1.26266FL 3.63968FL 0.787975FL {{"T}’ {“T}' {“T}' {"T}' {0}} P=K.A {{—0.436762 F}, {—1.26266 F}, {—0.606614 F}, {—0.185728 F}, {0}} Wﬁﬁexz -—> ' Maggy JE II , i) S pnmo‘m o I 6‘— Rm‘oﬁvn Forte, = —f— The {1an T6 In: ezmibbvmm a}: O "’ Wm E W mm»? "" Tau Jamil} NM £71 sol/re ﬁe 57mm (we, T i I i 9 /I // Aw’ﬁﬁmmefm é Wain/1191M #0 are Mia/7 myrr/ _) My. My and ' W90)» formng Dis /acemw€(,&) _ WP?!) “'1 AAﬁ/(jaf—ﬂ-f’7LL—f‘+%; g?) = Mas-(gig) ’7 ’ PAM {'1’} +21% AA; =0 7 (31.» z ’37P! ” // r/\ 125? 1 1 W!) = F‘ Ami—I) + if!» m i , 11-7“ W5“) 5 * W4 ‘AAB 4 Pugh-‘1 )7 A " YW‘AAB ‘5’ FAA; =0 7 Wm ‘ :‘f—Fﬂ ll [6 #7J/ﬂ” 1) g i E I g! 'I 1’ W9( Ha - W’fa’fe F 1 , z é ' F {M1 M6 Mead/Tim! 5 m , . xv a a. if 2% a 0 m7 m_.,7 x.) _ . I an i . + \ (Ix X \g ( I J... 0 J T113}: L «.A .8 1M, .3 M! 4Vst H {Wigwamzzi , ‘ _ 3.5? ” ar— / I: I _ 0‘ 10:9}? , x [J A “ L? I? i /? LT; . . a W e, T. ( in giggiiiiiigl; W a rigs?) m 0» a; ,0 .0 27 = fish!§¥i\ Til-Gilli} , , fr: + IN 0 0 Tlllllullulllli} :, w w m w (iii A D A A .. Jm/ Tiligk \ as.) «09/ w W/ﬁrv “Pr... — rHasHQaHJ a? o 0 V F” M M M. ‘ if z. i riiiik _. . . - / +1 a a 0 ,w i K N m V w = % NP ‘ .0 I! I; 0 .ﬁ/ LTT/T, M FL) 0 0 e .§ 2 :13ka M (Illllrlilillm. “,1 _ w, . . “ xﬁxw a 0 MT w . M [ii 0 # m . F W W 5 = + e H; {52%; E r: 2:} .3: .3?» put V WW w, A w a m A w a ,, 1m «QM/m AD AV «1/; AC M H M M\ E ................. \ggifgiiiigiiii‘lgiiilI!igiggiigiiigigga .. 4. ﬁf. 7I—3ﬂé5‘7F/g ‘F‘qu? VA ‘ ’9' I mmmmwwaw é Axis of Antisymmetry T 1.5421F l 1.3351FL I 1.54le g 1.54le : <— 0.7421F i 0.74le 1.1F i 1.1F 1.3351FL i 1.3351FL 1-1F W : LEW 0 7421F E 0.7421]? Force & Moment are antisymmertic ...
View Full Document

• Spring '08
• felton
• Trigraph, Emoticon, ea, EA EA EA

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern