{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Week_2

# Week_2 - Week 2 1.1 Systems of Linear Equations A linear...

This preview shows pages 1–2. Sign up to view the full content.

Week 2 1.1 Systems of Linear Equations A linear equation in the n unknowns x 1 , x 2 , . . . x n is an equation of the form a 1 x 1 + a 2 x 2 + . . . a n x n = b, where a 1 , a 2 , . . . a n , b are real constants. The graphs of linear equations in 2 variables are lines. ex. 2 x + y = 3 A solution of a linear equation is a sequence of numbers ( s 1 , s 2 , . . . s n ) so that the equation is satis- fied when we substitute x 1 = s 1 , x 2 = s 2 , . . . , x n = s n . ex. A solution to 2 x + y = 3 is ( - 1 , - 1). Geometrically, a solution is a point on the line. A system of linear equations is a set of linear equations. A solution to a linear system must satisfy all equations in the system. Every linear system has either: 1. No solutions 2. Exactly 1 solution 3. Infinitely many solutions Geometrically, a solution to a system of 2 linear equations in 2 unknowns is a point of intersection. To find the solution(s), if any, to a linear system, we can perform elementary operations on the equations such as multiplying both sides of an equation by a scalar, or adding/subtracting equations together to come up with a simpler system with the same number of equations.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern