CG - N u m e r i c a l S o l u t i o n o f O p t i c a l -...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: N u m e r i c a l S o l u t i o n o f O p t i c a l - F l o w P r o b l e m s Example Example Computing Optical Flow t t t + t t + 2 ( , ) u v I x y t ( , , ) I x u t y v t t t ( , , ) + + + I x u t y v t t t ( , , ) + + + 2 2 2 = = I x u t y v t t t I x y t I x u t I y v t I t t high order terms I x u t I y v t I t t I x u I y v I t I x I y u v I t ( , , ) ( , , ) ( , ) ( , ) + + + = + + + +-- + + = + + = = - intensity stays constant intensity stays constant E I x u I y v I t u x u y v x v y dxdy = + + + + + + ( ) [( ) ( ) ( ) ( ) ] 2 2 2 2 2 Optimization Formulation x Discretize the governing equation, at ( i,j ): u x u u u y u u v x v v v y v v i j i j i j i j i j i j i j i j =- =- =- =- + + + + 1 1 1 1 , , , , , , , , x Discretized expression : E I x u I y v I t u u u u v v v v i j i j i j i j i j j i i j i j i j i j i j i j i j i j = + + +- +- +- +- + + + + ( ) [( ) ( ) ( ) ( ) ] , , , , , , , , , , , , , 2 1 2 1 2 1 2 1 2 At a pixel location ( k,l ): E u I x u I y v I t I x u u u u u u u u k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l , , , , , , , , , , , , , , , ( ) [( ) ( ) ( ) ( )] = + +-- +- +- +- =-- + + 2 2 1 1 1 1 E v I x u I y v I t I y v v v v v v v v k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l , , , , , , , , , , , , , , , ( ) [( ) ( ) ( ) ( )] = + +-- +- +- +- =-- + + 2 2 1 1 1 1 E = L Differentiation (k,l) (k,l+1) (k+1,l) (k,l-1) (k-1,l) Putting it all together: 4 / ) ( 4 / ) ( ) ( 4 ) ( ) ( 4 ) ( 1 , , 1 1 , , 1 1 , , 1 1 , , 1 , , , , 2 , , , , , , , , , , , 2 , + +-- + +-- + + + = + + + = =-- + + =-- + + l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k l k v v v v v u u u u u v v t I y I v y I u y I x I u u t I x I v y I x I u x I Differentiation (cont.) (k,l) (k,l+1) (k+1,l) (k,l-1) (k-1,l) [ ( ) ] [ ( ) ] , , , , , , , , , , , , , , 4 4 4 4 2 2 + + =- + + =- I x u I x I y v u I x I t I x I y u I y v v I y I t k l k l k l k l k l k l k l k l k l k l k l k l k l k l u u I x u I y v I t I x I y I x v v I x u I y v I t I x I y I y k l k l k l k l k l k l k l k l k l k l k l k l k l k l , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) =- + + + + =- + + + + 4 4 2 2 2 2 u u I x u I y v I t I x I y I x v v I x u I y v I t I x I y I y k l k l k l k l k l k l k l k l k l k l k l k l k l k l , , , , , , , , , ,...
View Full Document

This note was uploaded on 08/06/2008 for the course CS 595I taught by Professor Wang during the Winter '07 term at UCSB.

Page1 / 94

CG - N u m e r i c a l S o l u t i o n o f O p t i c a l -...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online