This preview shows pages 1–5. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Introduction to Mathematical Programming IE496 Lecture 6 Dr. Ted Ralphs IE496 Lecture 6 1 Reading for This Lecture Bertsimas 3.13.2. IE496 Lecture 6 2 What Weve Learned So Far We are interested in the extreme points of polyhedra. There is a onetoone correspondence between the extreme points of a polyhedron and the basic feasible solutions . We can construct basic solutions by Choosing a basis B of m linearly independent columns of A . Solve the system Bx B = b to obtain the values of the basic variables. Set x N = 0 . We can move between adjacent (nondegenerate) basic solutions by removing one column of the basis and replacing it with another. In the presence of degeneracy , we might stay at the same extreme point. These are the building blocks we need to construct algorithms for solving LPs. IE496 Lecture 6 3 Iterative Search Algorithms Many optimization algorithms are iterative in nature. Geometrically, this means that they move from a given starting point to a new point in a specified search direction . This search direction is calculated to be both feasible and improving . The process stops when we can no longer find a feasible, improving direction....
View Full
Document
 Fall '08
 Ralphs

Click to edit the document details