This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ECE 108 Signals and Systems
Spring 2007, Instructor: Tiffany Li
QUIZ. 3 (50 minutes) Name: 1. (24 point) Deﬁnitions of Fourier series and Fourier transform: Trigonometric Fourier Series (8 points): LO \
ﬁt): 620+ % (an 506(I’Jl/002i1) 'f" 5915!“ (‘4 W91“)
I
[102“???[n 3”er—
.2,
an: 7 73 fatmosrnwnwacs who “rt/await
ﬁt) — gm DM 6 77?;
D”=’~%; in frrMﬁw/CM 2. (30 points) Given f (t) = cos(w0t), graph the spectrum of ﬁt) cosmet)" Assume we > 7.05“ fa?) CD impk!) ($29 ‘3 C to we) +F( La eryﬂ I {Jr/DENISUM) W I
ﬁx) (3(a) (I {3* C0 ‘6‘) ‘ 7?
9 mm ) 5( cf)$$3[§{wwm~wc) +5m+wnvcoij
+5lLO“ wéi+w6) ("3 'f (“)0 H’Jcﬂ
:2? 1h \‘ga any dg/mz‘e,’ 4 5/)663'741 bile; ZE
lowﬂof ‘ ‘ l }
W 4i [/00 Hue! pug—mug , qwﬂpwo/ i ... Wwa AMP WW Sfacfmw TT W‘Taﬂ‘wc '“U’c, "HA 0 PM SR S’pédmw .. 3. (30 points) Signal f (t) has a Fourier transform F(w) m 005(2w). (3 points) Is ﬁt) real?( T F ) f a I A Vea(
(3 points) 15 m) periodico @) fut) teal $9 an (an (=9 Frau) MM?
) ? ( T
(3 points) Is ﬁt) even? ((1) F
(t (spoimsusf )odd?( T F ) JCHT) reﬁt 05m $1? FM) puffy
(harm?! 51; MM fut) fﬁm'd’b (:9 RIWComstf; “ff 5”th SfEC'ﬁ’id (18 points)Plot the amplitude and phase spectra of f , Fa"
F012)":— C°S(?,o=3): ’02; (2,03), £4 ( ) M1125 (gm«nay
/JNV\{7((,M.Q : (®S(lw})
(9/1662 ._ 0 idwa gunﬁgo, 7T {MW1 tins awaits? /"* I PM” // Mm «ﬁmwﬁy / 4. (16 points) Prove the foliowing Fourier transform pair 27rf1(t) f2(t) 42¢ Flue) * F2(w) Rm) av ﬁrm) sf: gm ﬂea) dv  “I _ ____ f “ft/30w _ gilﬁt
JL [(—[Cwahv] momma a q an,»
M ' «OD
_. i w» “W” _. . '43th I
“Rico .ogoF'W) fl(wwv)dv‘ e 06‘“
\ , (ﬂea"Wi—
WO 15m JVﬂl _, div)
...._L‘ , «u dv
"zﬁi,uo ENROQ 'i’LU’B )Q T
K dlw«V)
[gt W’W’V
W {.69 turn“ \Vi—W grwik
WEE HWEJ {glove cit/LL10);
~ ""5 Am
WW m o‘vﬁ
m e. ,\ "foo." govt ] wt .. , d’ by]
rzn‘ [EL “00 at?
3275900 jeeﬁt) Table 1: Fourier Transform Operations Addition f1(t) + fga) F1 (71)) + F2(‘UJ)
Seaiar multiplication kf (t) 19F (to) Symmetry F(t) 27rf(~w~w) Scaling (a real) f (at) Time shift ﬁt — to) F(w)e‘jw‘°
Frequency shift f (t)eju""t F (w w 100) Time convolution f1(tW2(t) F101;) e F2('LU)
Time differentiation 9% (jw)"F(w) Time integration Kw f($)d.’l’: + 7rF(0)6(w) ...
View
Full Document
 Spring '08
 Li
 Fourier Series, Fourier Transform Operations

Click to edit the document details