EE402 Fall 2004exam1

# EE402 Fall 2004exam1 - [email protected]’ Exam 1 EE 402 jgh Name...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: [email protected]’\ Exam 1 EE 402 jgh 10/22/04 Name Salute”? 1'? €22 two parts; total of 100 points (70 minutes) I have neither given nor received unpermitted aid during this examination. (signature) Part 1 — closed book and notes, no calculator. When ﬁnished, turn in to get part 2. l. (9)a. State the symbol used in the text and the SI units for the following: electric ﬁeld intensity E V/ W permittivity C— F/m electric ﬂux density 3 Q/m‘z permeability [A “/vvx magnetic ﬁeld intensity,Q H A’m volume current density £3: A/ M“— magnetic ﬂux density? __ M"/ W volume charge density (3,” Chi/1'3 conductivity 0‘ 157m 2.(4)a. For a linear, isotropic media with 11, a, 0, state the differential form of Maxwell’s equations. {3v \/ V E z 0 3%. V E ' ' 51-: ‘1; . E vx E 9. ‘t %1- + G - (3 )b. State the constitutive relations for u, a, c. J; ” (1‘ E §=eé ”E: M 1;» (1)0. State the deﬁnti t10 of the instantaneous Poynting vector and give units. E T: ‘kEL w/ m1 3.(4) State the four boundary conditions for two linear, isotropic materials as shown. G e (4% . l ‘ laws—go: Ps ” %%‘%E=O L) Y) \L [a x {‘4 1 ~ \ 4.(4)a. State the time harmonic Maxwell’s equations for a source free linear, isotropic media with 11, 8, o. ,\ Ct 6: 5. (2) State the name, symbol, and SI units of the real and imaginary parts of the propagation constant y. . o; as“? QM e (1 t“. 1.31m 6' 3m. 3%“? Mid/m A . 3- : ol Hfs (5 @iA‘AIiQ 0,7215%: Mex; Wad/m 6. (3) Given a TEM time harmonic ﬁeld in a linear isotropic homogeneous media given by the phasors Ex(z)ax= (E' eJBZ + Em ejﬁz)ax and l—Iy(z)gy— _ (HQ'SJBZ + HnTejBZ)a, deﬁne and give units: a. intrinsic wave impedance ~ 1.. ”,1? E m f ‘7 e 17': ‘4 "’ “7?“; t' _ 5W3 Esﬁ, b. total ﬁeld impedance at z A r? I}: : 13.1 J? u u U c. reﬂection coefﬁc1ent at z 0 A /‘ I‘ "' “ \31 v ‘2 A E G p/ a ._ :M g C wriﬁ {7‘0} :1 ’ AM \e 1’ " “I; f. ”b Exam 1 BB 402 jgh 10/22/04 Name two parts; total of 100 points (70 minutes) lhave neither given nor received unpermitted aid during this examination. (signature) Part 2 — 8 1/2 x 11 sheet of notes and calculator 1. The electric ﬁeld intensity of a sinusoidal steady state TEM wave traveling in low-loss linear isotropic material, i.e., G / (co 8) << 1, is given by: _ at} E(z,t) = 20 exp(-0.0094z) cos(127t108t—87tz) ax (uV/m). : EM e (as ( on: - ﬂ 3,) ﬁx Find the following assuming H 2 Ho, and state units: (2)a. frequency f; 2W8”: («J I 037109 7:) V; : 6X1OG : 603M“; (2)b. attenuation constant on; ‘ o< -. 0.00034- (HP/m) (2)c. phase constant B; 18 ‘1‘ 931T 1W1 Ci/m) (2)d. phase velocity vp; ”If ‘ 3:1 __ \ztttote’ : ;,_3‘)(iog im/S) P ' Q ~ \$3? (2)e. wavelength 1; . an at: - 2 m - é; - A -: 72 t g” -* 0' {L 3 1%: C—r- e0 ‘ (2)f. the value for a; 32 (43) gr) imr MJgg; ngéﬁé ‘, ﬁt WW2: 1} 6 7‘ [OI/LL“ I QZW/OQBL141TK‘Q'V) (2)g. intrinsic wave impedance 7]; A.“ )00‘ ’ ‘ 0 +W\i -1055 YMcgwa \ vi: 3).?“ :XW - [430,44 K51) (2)b. estimate for conductivity 0; -n ‘ : 3.540110 (7;) 26‘ ~ 210.99%)“, : 0103211105 64“} JEN him—10% Waite.“ 04:: 47;? =3 0‘: T W (2)1. phasor representation 111(2); V A ~0.0oa+ -38? a god) 2 me 1e 33w (M A F (2)j. phasor representation 11(2)? 016% 1, 05;; 31:1- :33??? Maﬁa 0 00054? Agngo HMO) 2 1:13.14 : 20 e 933 : OnObQ 9. 9 "' ’1 ‘3 ’QGJSA (2)k. time representation H(z,t); 0‘ 00014—9 PA I A “1C ' 1 at ~ (3“ a __ Ema = 12413133 «93 3— 1 (3.1er (0502:? o g) _«3 k M maxzrr‘log 7. (2)1. time-average Poynting vector Pav(z). , J 120 Q ~0.<l76‘43) a A , q J HER}; __ MM” 5‘ 9! " 1 L7. 13915139‘ ”373' 3 1 (Wk—1M9; ' 251341.414“; 3 Mi) 2. Given the electric ﬁeld intensity E1 and the magnetic ﬁeld intensity H1 at the origin for z < 0 at the boundary between the two perfect dielectrics regions deﬁned as shown (note the units): E1: 1807c 21K + 2407: ay + 3007: aZ (mV/m) 6: =0 l H1: 3 21K + 4 any + 5 aZ (mA/m); [h S/Ua showing all work, 5 : 4-60 (10)a. determine the ﬁeld D2 at the origin for z > o; ’ “M: 91V4¢&§\€\OCH\Q “:13 Pg :0) \$5 : O .. MC b‘ = (7?; : 463 0‘60??ij *Z—‘tong? +303'ﬁ‘933 K‘le ”2L Q=2°e V\' (\$259.3 : O 1> 323* \ZQﬁB—W: O :— \'LOO’\TeQ—;§. Pb“ : «mwée 95 —'L i\ b V) 3“ E)” 9) 3 O 23 "EM? 6:th 196W gx’rz‘mﬁﬂ‘g‘, “ EU: a} ‘3‘ Eva 03:3 :2) 51"th30? W €13: 240W A : igoﬁﬁ} it l4oti‘gx? _ “ ~ " e +2Amroie> ":5 th: ézitl - 160< MON-03', ”a DJ: 1 lgdﬁéh 3x + MOWEO 2? (® 3‘ E7. 7‘ btz‘l‘ b I Delgeyﬁeo g¥>‘l‘0‘240ﬁ\€o€\‘a ‘l- Llagﬁeogé {914(2) uh; (10)b. determine the ﬁeld B; at the origin for z > 0. \“(_B;|‘:/’l Er" Mel’béﬁse 4- A33 Jr 522‘) it} M V‘ X (“1“ H” :' O :3 Hi1: Ht), LSHxaz 3—5 <O\ .\ \ 3 Em "l' 4 3‘3 : V'HZXCZLK —\—- “a? 936 :3 l’lL‘K t. 3 Mw/l “215 2 4- % Bu = )in \i-t't = Arko 3’0 = aﬂoat; 4— 19/40- 3. A TEM wave traveling in a linear isotropic region 1 deﬁned by 2 <0 is incident on another linear isotropic region 2 deﬁned by z > 0, where the properties of each are given as shown. If the sinusoidal steady state phasor representation of the incident electric ﬁeld is given by E1(z)= 3 exp( -j(161c/3)z) aX (V/m) GT :0 £1 2-1:,360 then determine the following: a): 4' go i if; ; 2}! O (2)21. the intrinsic wave impedance of regionl 1111: (l. : 2L/14:;1Vl__o = i3) 1' boﬁC-Ql WD- ’2 § (2)b. the intrinsic wave impedance of region}, 112; 111:. .1 SZAO ~' .; 51A 6L « 260 - no -1107? ( (2)c. the reﬂection coefﬁcient at the boundary for region 1, 11(0); 41-11. ~ llo'U- (son (60‘? ~ ,L a» A V103) 3 ”2411‘ .. i261"? +5911" ., ‘30 TV ‘ 3 A (2)d. the transmission coefﬁcient at the boundary, T; :11; M; .1 201an : 240R : {1; “ 1121111“ 12m +5011 1901? 3 A» _1_ .L ,_ 1 (3am : MW): 1 i> \‘1 3 ' ‘53") (2)e. the phasor representation of the reﬂected electric ﬁeld; A ‘ 4 ~ - ~+ - . , _ Em - T110; by," , (13)“) -1 319; 4 we v @111: EAUL-‘sélgb: e {be t/ml (4)f. the phasor representation of the transmitted magnetic ﬁeld; ” “*1 A. e a: -— ~1— ém. 141121 N re “W Wt E w 11% “ 2 £ng 5 e “m any“??? 1)“; ”‘45:? “A 4?}? ’3 2%“0 “CS” ‘ 1M: a ' ﬁ .2 %. “19‘3_ ”0“- 213 10.1) QM) Effig‘jlw) _- 1% : {5, (4)g. the total ﬁeld impedance; 1n region 1 at the boundary, 21(0); , 1+ We \+k‘/2,l _ ,_ ”21(0) : Vla ”‘ __ ﬁlo) : K90“) 1' V35 110 H on (4)11. the reﬂection coefﬁcient at z— — - l in if the frequency IS 400 MHz, F101); “(3‘1 : lite) e “5‘3 ﬁt?) 2 (L2,) e12tlég)t~\) A r» 1‘ "ggx 115+ 1 «4% \mw\ -— L «EL? y‘ L 7. ‘ W11 L I __ w \‘w ‘ 111.2 & fyhh f i \951 207—011 35 ’ \$119. mil 1‘11. ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern