# ch02 - PROBLEM 2.1 KNOWN Steady-state one-dimensional heat...

This preview shows pages 1–4. Sign up to view the full content.

PROBLEM 2.1 KNOWN: Steady-state, one-dimensional heat conduction through an axisymmetric shape. FIND: Sketch temperature distribution and explain shape of curve. SCHEMATIC: ASSUMPTIONS: (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No internal heat generation. ANALYSIS: Performing an energy balance on the object according to Eq. 1.11a, ± ± , E E in out = 0 it follows that ± ± E E q in out x = and that q q x x x ± \$ . That is, the heat rate within the object is everywhere constant. From Fourier’s law, q kA dT dx x x = − , and since q x and k are both constants, it follows that A dT dx Constant. x = That is, the product of the cross-sectional area normal to the heat rate and temperature gradient remains a constant and independent of distance x. It follows that since A x increases with x, then dT/dx must decrease with increasing x. Hence, the temperature distribution appears as shown above. COMMENTS: (1) Be sure to recognize that dT/dx is the slope of the temperature distribution. (2) What would the distribution be when T 2 > T 1 ? (3) How does the heat flux, ′′ q x , vary with distance?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
PROBLEM 2.3 KNOWN: A spherical shell with prescribed geometry and surface temperatures. FIND: Sketch temperature distribution and explain shape of the curve. SCHEMATIC: ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in radial (spherical coordinates) direction, (3) No internal generation, (4) Constant properties.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern