sln7 - HW#7 Problem 1(a F E = E e sin E M F M = M e sin M M...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
HW#7 Problem 1 (a) [] s i n s i n s i n 0s i n 0 sin 0 [ ] 0 0 FE E e E M FM M e M M e M MM eM F M e π =− −= ≤≤→ →− (b) s i n s i n () ( 1 s i n ) 0 0 sin( ) 0 1 sin( ) 0 (1 sin( )) 0 [ ] 0 0 FMe Mee Me Me Me M e FMe e += +− +− = − + ≤≤ →≤ +≤ → + ≥→− + ≥→ − + ≥→ + ≥ (c) s i n 1 sin 1 sin 11 1 1 1 1 01 1 0 1 0 1 0 0 sin 0 sin 0 0 1 1 1s i n 0 111 M M Fe M M e ee e e e M e M M e e F eee    =   ++ + + +     +  →≤ ≤ → ≥→ + +++ 0 e
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
(d) () [] s i n sin 11 1 1 1s i n ( 1 ) s i n 1 (1 ) sin 1 sin sin 1 sin FE E e E M MM M Fe M ee e M Me M e e e M Me e e e Me M e Me M M el e t e e θ θθ =−      −−      + =−− = = e 3 ... 0 3! (e) s i n 1 M FF M e e for hyperbolic orbits <+ (f) sin sin 00 s i n 1 0 s i n 0 2 1 sin 0 sin 0 0 MEe E EM e E e M e E M e e e M e E π ππ −=
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/26/2008 for the course EAS 4510 taught by Professor Fitz-coy during the Spring '05 term at University of Florida.

Page1 / 5

sln7 - HW#7 Problem 1(a F E = E e sin E M F M = M e sin M M...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online