# 11 for benzene and 9213 the result is component kmolh

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: d 92.13. The result is: Component kmol/h Mole fraction Benzene 69.65 0.44 Toluene 88.57 0.56 Total: 158.22 1.00 For a distillate of 97 wt% benzene, the mole fraction for benzene, the more volatile of the two components, is, 97 7811 . xD = = 0.974 97 3 + 78.11 92.13 With a reflux ratio of 3.5, from Eq. (7-7), the slope of the rectifying section operating line is, L/V = R/(1 + R) = 3.5/4.5 = 0.778 The q-line is a horizontal line at y = 0.44. For 14 plates with 50% efficiency, the column has the equivalent of 7 equilibrium stages + 1 for the partial reboiler. The McCabe-Thiele construction is shown on the next page, where it is seen that it is possible to obtain the desired distillate composition. (b) and (c) From the McCabe-Thiele diagram, the mole fraction of benzene in the bottoms is xB = 0.24. As a weight fraction, this corresponds to, 0.24(78.11) = 0.211 weight fraction or 21.1 wt% benzene 0.24(7811) + 0.76(92.13) . Compute the distillate rate by overall molar material balances. Overall total ma...
View Full Document

## This note was uploaded on 09/08/2008 for the course CHE 244 taught by Professor Selebi during the Spring '06 term at Lehigh University .

Ask a homework question - tutors are online