# 75 xb b from the reflux ratio l 3d v l d 4d

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: the reflux ratio, L = 3D, V = L + D = 4D. Therefore, D/V = 1/4 and L/V =3/4. Use a subscript of D for distillate, R for reflux, B for streams leaving the reboiler, and 1 for the theoretical plate, when used. With 1 theoretical plate, from part (a), y1 = 0.75 xD = 0.75 x1 = 0.545 Benzene material balance around plate 1, y BV + x D L = y1V + x1 L (3) Solving for yB L 3 y B = y1 + ( x1 - x D ) = 0.750 + (0.545 - 0.750) = 0.596 V 4 Analysis: (b) (continued) Exercise 7.12 (continued) The mole fraction of benzene in the bottoms product is in equilibrium with yB =0.596. Therefore, the form of Eq. (2) applies, yB 0.596 xB = = = 0.371 y B + (1 - y B ) 0.596 + 2.5(1 - 0.596) Overall total material balance, F = 100 = D + B (4) Overall benzene material balance, xFF = xDD + xBB or 50 = 0.75D + 0.371B (5) Solving Eqs. (4) and (5), D = 34.2 moles or 34.2 mol/100 mol feed, and B = 65.8 moles. (c) With the feed to the theoretical plate, the following results apply from part (b), y1 = 0.75 xD = 0.75 x1 = 0...
View Full Document

## This note was uploaded on 09/08/2008 for the course CHE 244 taught by Professor Selebi during the Spring '06 term at Lehigh University .

Ask a homework question - tutors are online