771077 1 09150 analysis continued this line passes

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: line. The equation for this line is given by Eq. (7-9), L 1 1 (2) x+ x D = 0.915x + (0.98) = 0.915x + 0.08326 V R +1 11.77 + 1 Below the feed stage, with 10 mol% vaporization of the feed, L / V = 10535. From a . rearrangement of Eq. (7-12), the boilup ratio, VB, is 18.6916. The equation of the stripping section operating line is given by Eq. 7-14), L 1 1 y= x- x D = 10535x - . (0.04) = 10535x - 0.00214 . (3) V VB 18.6916 y= The equation for the q-line is given by Eq. (7-26), y= q 1 0.9 1 x- zF = x- (0.62) = -9 x + 6.2 q -1 q -1 0.9 - 1 0.9 - 1 (4) Exercise 7.39 (continued) Based on Eqs. (1) to (4), the McCabe-Thiele diagram in terms of P, the more volatile component, is drawn below for three regions: (2) x = 0.2 to 0.4, (3) x = 0.4 to 0.6, and (4) x = 0.6 to 0.8, in order to gain accuracy. In these three regions, 28 stages are stepped off in the rectifying section up to x = 0.8, and 34.3 stages are stepped off in the stripping section down to x = 0.2. Let region (1) extend from x = 0.8 to 0.98 (i.e. xD). Apply the Kremser equation...
View Full Document

Ask a homework question - tutors are online