A flow rate equal to that of he leakage passes out

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: out the bottom of the column. In normal operation, the water passing out in the distillate = 0.1(53) = 5.3 kmol/h, while for the abnormal operation, the water passing out in the distillate = 0.2(53) = 10.6 kmol/h. Thus, an additional 5.3 kmol/h of water leaves in the distillate. For the abnormal operation, the overhead vapor rate = 53 + 94 = 147 kmol/h and, therefore, 53/147 x 100% = 36% of the overhead vapor (total condensate) is distillate. Thus, if 15 kmol/h of water leaked into the overhead vapor, then, we would expect 0.36(15) = 5.4 kmol/h would be expected to leave with the distillate. This compares very well with the 5.3 kmol/h additional water calculated above by material balance. If the degree of fractionation within the column is about the same as for the normal operation, it could be concluded that a condenser cooling water leak is to blame. To check the cooling water leak, could meter the cooling water in and out of the condenser and see if there is a difference. If the vapor rate is kept constant and the refl...
View Full Document

This note was uploaded on 09/08/2008 for the course CHE 244 taught by Professor Selebi during the Spring '06 term at Lehigh University .

Ask a homework question - tutors are online