See plot below where benzene mole fractions are

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: , where benzene mole fractions are plotted because it is the more volatile component. It is seen that for benzene, xD = 0.90 and xB = 0.28. Exercise 7.14 (continued) McCabe-Thiele Diagram Exercise 7.15 Subject: Effect of loss of plates in a distillation column separating a benzene-toluene mixture. Given: Saturated vapor feed of 13,600 kg/h of 40 wt% benzene and 60 wt% toluene. Column with 14 plates above the feed location. Plate efficiency is 50%. Reflux ratio is 3.5. Previously, with 10 plates in the stripping section, column could achieve a distillate of 97 wt% benzene and a bottoms of 98 wt% toluene. Vapor-liquid equilibrium data in Exercise 7.13. Assumptions: Constant molar overflow. Total condenser and partial reboiler. Find: (a) If column with 10 inoperable plates can yield a distillate of 97 wt% benzene, assuming that we no longer can achieve the 98 wt% bottoms product. (b) The distillate flow rate. (c) The composition of the bottoms. Analysis: (a) First convert the feed to kmol/h and mole fractions, using molecular weights of 78.11 for benzene an...
View Full Document

Ask a homework question - tutors are online