This still does not account for the effect of

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ontinued) Exercise 7.41 (continued) (b) From Eq. (7-42), Eo = 13.3 - 66.7 log Take the viscosity as that of the feed = 0.34 cP Eo = 13.3 - 66.7 log (0.34) = 44.6% This is poor agreement with the performance data. (c) From Eq. (7-43), Eo = 50.3()-0.226 At the feed composition, x = 0.36 and y = 0.71. Therefore, from Eqs (2-19) and (2-21 combined, the relative volatility is, = ( y/x)/[(1 - y)/(1 - x)] = (0.71/0.36)/(0.29/0.64) = 4.4 Exercise 7.41 (continued) Analysis: Eo = 50.3[(4.4)(0.34)]-0.226 = 45.9% Now correct for length of liquid path from Fig. 7.5. Column diameter = 6 ft. Assume length of liquid path = 70% of column diameter = 0.7(6) = 4.2 ft. From Fig. 7.5, correction to be added = 10%. Therefore corrected Eo = 45.9 + 10 = 55.9% This also appears to be low. (d) From Eq. (6-56), NOG = - ln (1 - EOV). Therefore, EOV = 1 - exp(-NOG) Use Eqs. (6-62, (6-64), (6-66), and (6-67) as in Example 6.7. Carry out the calculations at the bottom tray based on methanol diffusion. Conditions are: Molar flow...
View Full Document

Ask a homework question - tutors are online