Ch07

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a boilup ratio = 1.2 times minimum. Analysis: From a rearrangement of the equilibrium equation, Eq. (7-3), y y x= = (1) y + (1 - y ) 6 - 5 y (a) For minimum stages, have total reflux, so that y = x for passing streams. Begin calculations from the top. yD = y1 = 0.35. From Eq. (1), x1 = 0.35/[6 - 5(0.35)] = 0.0824. Therefore, y2 = x1 = 0.0824. From Eq. (1), x2 = 0.0824/[6-5(0.0824)] = 0.0147. Therefore, y3 = x2 = 0.0147. From Eq. (1), x3 = 0.0147/[6-5(0.0147)] = 0.0025. This is close to but not quite equal to the desired value of 0.002. Thus, we need just slightly more than 3 minimum equilibrium stages. (b) For minimum boilup ratio, the stripping section operating line connects the two points for {y, x} of {0.002, 0.002} and {y in equilibrium with x = 0.05}. From a rearrangement of Eq. (1), the y in equilibrium with x = 0.05 is: y = x/[1 + x( - 1)] = 6(0.05)/[1 + 0.05(6 - 1)] = 0.24. The slope of the operating line = ( L / V ) = (0.24 0.002)/(0.05 - 0.002) = 4.96. From a rearrangement of Eq. (7-12), (VB)...
View Full Document

This note was uploaded on 09/08/2008 for the course CHE 244 taught by Professor Selebi during the Spring '06 term at Lehigh University .

Ask a homework question - tutors are online