final_s02

final_s02 - EB - 350 Last Name Exam 4 29 April 2002 0L)...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EB - 350 Last Name Exam 4 29 April 2002 0L) First Name Student # Section :5pr DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Test Form A Instructions You have 115 minutes hours to complete the exam. Calculators are not allowed. This exam is closed book. You may use one 8.5" x 11" note sheet. Solve each part of the problem in the space following the question. If you need more space, continue your solution on the reverse side labeling the page with the question number, for example, "Problem 1.2 Continued". NO credit will be given to solutions that do not meet this requirement. DO NOT REMOVE ANY PAGES FROM THIS EXAM. Loose papers will not be accepted and a grade of ZERO will be assigned. If you introduce a voltage or current in the analysis of a circuit, you must clearly label the new variable in the circuit diagram and indicate the voltage polarity or current direction. If you fail to clearly define the voltages and currents used in your analysis, you will receive ZERO credit. The quality of your analysis and evaluation is as important as your answers. Your reasoning must be precise and clear; your complete English sentences should convey what you are doing. To receive credit, you must show your work. Problem 1 (25 points) To receive credit for this problem, you must use Laplace transform methods to perform your analysis. Y (s) F (5) answer in standard form. Assume that Rl = 2 Q and R2 =1 (2. 1.1 (10 points) Compute the transfer function of the circuit shown below and place your mg; #1 Q R\+$¢| | + PCS) _1_ fl St. I PCS) Scfl‘+‘ 9 l ___. PCS) F-Cs) 5mm! 3 ___,_——/“ YCS) = __,___————————-—"""‘ 2. J1...— .,_ .3 .,. gL R. + scflfiz+ K7, +5LcR, 4-SL. z. Seth-H ’chR, “r M " " rz +R2. fl ‘ ‘ {12. J..— \ a 5" w? + SCCR.KL+L) “W15 87‘1- 5C1“? an * 72.7: \ Sumatran 62%;) W) 1.2 (8 points) Compute the zero input response, YZIR (s) , of the circuit shown below. Assume thatR=4 o, vc(0')=4Vandthat y(0')=3 A. Set $CQ :0 “my” "Whig Im'blul Conflt'klon genera-M 'Qr‘ ‘Lhe Capacrbor‘ amQ. incauo 4". 1.3 (7 points) Determine y(t) , given t __ 2 Y(S)— s(s2 +3s+2)' = 2' :- fi—u L + C- 2.. 9,: -=. I 5:0 / z " '2 3 .S I; . . " B C )scs MS”? 5:4 3 ' S C . SCSfl}(sw 5:.L. 1 . YCS) i- ‘z'("’i_'> + 5+7. Problem 2 (25 points) 2.1 (15 points) Consider the system represented by the block diagram shown below. Find the X (S) , assuming that K = 2 andG(s) =-—:—l. s closed — loop transfer function, H (s) = F (S) 2.2 (10 points) A system has the closed — loop transfer function Y (s) 9 F(s) = s2 +Ks+9' Assume that the input to the system is f (t) = u (t). For what value of control gain K will the response of the closed —- loop system be under damped with 4' = 0.1. Yts) _ ‘I 7 w: Problem 3 (25 points) 3.1 (16 points) A system has the transfer function H(s)=_s(£ilfl_ (s+10)(s+105)' Sketch the magnitude and phase Bode plots of the system using the semilog graph paper provided in the following two pages. In order to receive credit: 0 In both the magnitude and phase plots, indicate construction'lines for each term using dashed lines. 0 Indicate the slope for each straight - line segment and corner frequencies for the final magnitude and phase plot. 10‘{ f” (dW/"fl *0 W Ht?» 3 lo - l05 gw/Io-rl) WWI/05“”) 2. Elf—1 F’fl : ' aLw/Io‘l- (fur/10V +l) /_____________,__. (£15112 W 3.2 (9 points) Find the steady? state response to the input f (t) = 5 +17sin(104t) of the system whose transfer function is depicted in the following Bode plot. {lea : 5 4- I7 (osCIO‘Ll: ‘76) am) -= 5 We) + :7 ngl-IO“)|C05(to%-7o°+ wow) From W \ngflule == éoJB Q “(#0) 34.1000 mute) = 0° .... H( tom 3 IHCWO‘HAE' “OMS ’9 1 / “10° 23- Motw“) : 10 33 03....qu Frequency (Mince) 11 Problem 4 (25 points) 4.1 (10 points) A system has the impulse response h (t) = (3e’ — 2e‘2’ )u (t) . Determine the transfer function, H (s) , of the system and place it; in standard form, and sketch the pole —— zero map of H -2.—l: hot} ,7. 3e”: “(a " 2‘3 “(45) 12 4.2 (5 points) Determine if the system with the impulse response h (t) = (3e’ — 2e'2’ )u (t) , as given in part 1, is bounded input — bounded output stable. BQCMSQ the. eastern ball. a. PO/Qa ajé 53"") I": ‘45 unS’iSQMQJ amQ, theer is n01": EHSO sfic‘o‘e. A’kvnw‘E-IVRJ‘J) a co °° ‘zt [Mini-E =- [55—22. we : °° .09 0 Lemma 3"}: z 9’ taco 13 4.3 (10 points) A system is modeled by the relationship dZS’)+2d—yd(;g+6y(t)=4f(’)' Determine Y (s) in terms 0f the input, F (s) , and the system’s initial conditions y(0’) and y'(o-) . .32 YC$3 - 53(6) *5! (0‘) + zis {(5) 9/033 + 67153 = LIFCS) {52“ 23 1' 63m) : Sawo‘) +305) 4» '4ch) 14 ...
View Full Document

Page1 / 14

final_s02 - EB - 350 Last Name Exam 4 29 April 2002 0L)...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online