chapter2(6) - MATH1010: Chapter 2 cont 1 LIMITS AND...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH1010: Chapter 2 cont 1 LIMITS AND DERIVATIVES cont Tangents, Velocities, and Other Rates of Change (2.7, pg. 149) Recall: We introduced the limit concept to find slopes of tangent lines. Now that we have techniques for computing limits, lets return to this original task. To view an animation of this in Maple, type: > with(Student[Calculus1]): TangentSecantTutor(); Definition: The tangent line to the curve ) ( x f y = at the point )) ( , ( a f a P is the line through P with the slope a x a f x f m a x = ) ( ) ( lim provided that the limit exists. Application: If the position of a particle is given by 2 ) ( t t s = , find the instantaneous velocity at 1 = t , where t is time measured in seconds. MATH1010: Chapter 2 cont 2 We can also introduce an alternative expression for the slope of the tangent, where we consider point Q to be a distance h away from P often, this definition is easier to work with....
View Full Document

This note was uploaded on 09/13/2008 for the course MATH 1010u taught by Professor Kim during the Spring '08 term at Trinity University.

Page1 / 5

chapter2(6) - MATH1010: Chapter 2 cont 1 LIMITS AND...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online