{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

test 1 page 2

# test 1 page 2 - 32 — 25 if 7’ 5(3(1 pt each Supposeﬂm...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 32 — 25 if 7’; 5 (3) (1 pt. each) Supposeﬂm) = z m 5 z 10 ifx = 5 (a) Does hm f (x) exist? If so, what' IS its value? \$—>5 Litrwzmi 9"” 143%: xéSC¢+s).-_E - (b) Is f deﬁned at a: = 5 ? Ifso, whatis f (5). _ continuous at cc = 5? \$83 = (4) (2 pts each) State where each of the following ﬁmctions 15 continuous at + 2 “(x + a) (a) f(x) = 7:38 — 5:53 +3x+9 (h) f( )= x \$343" X #35623) Co n‘llmuLouS Euegwlwre Con InwauLS UPON ﬁr? Exc P 1" oi - o —- 3 + (5) (2 pts.) (True or False) The Intermdiate Value Theorem states the following. Suppose f (x) is continuous on the closed interval [(1, b] and N is any number snietly between f(a) and fan) where ﬂa) 7E f (5) Then there exist at least one number c: in the open interval (a, 5) such that f(c) 2N. ME 1mm (6) (5 pts.) Find the derivative 3" (3;) of the ﬁmctjon f(:1:) = 59:2 ~ 2x + 3 using th_e deﬁnition. Showwork. 2.. ? 4/00: M ¥C1+:)—'¢(1Q:gﬂ'f 5(x+ﬁ)-g(x+:)+3—Csxiax+3) “ﬁx-39 .._ ﬂ' 'JE ,5;|09c%+5% —M’1‘E\+X,WZ+MX «in—ho L '1’“, JJ -Q_ tox‘aa—S‘Bt aﬁ :4.-—>o —— Sim—1' iL:wa—§__t__—'E‘= ‘95 M on+\$‘B\— :- “iv—ho {1&0 C a) (7) ansider the eurvey— — E? V— ’— i F NHL! w (a) (4 pts.)Find the GELuatéonl Ofih‘: (b) (2 pts.) Find the values of tangent line at the point (2' — '1). xwhere the tangent line hasaslope gar-120) -('x-3)gu)_7<-__l_____~x+3 of 5? 58.]; R __ J_ La: (ac—I)" D“cx-_ éc 0” 2" I ' ' .— 3:....5_’:___Z \$.31 24%: @Cx'03‘i' gown-1:51 (ac-'1 (‘1 D *7“: slope. , =~>X=li1 ”Ft-"‘BWT'L La. F%_(—D=a(ac a) => M ...
View Full Document

{[ snackBarMessage ]}