lec0420 - CS 173: Discrete Mathematical Structures Cinda...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
CS 173: Discrete Mathematical Structures Cinda Heeren heeren@cs.uiuc.edu Siebel Center, rm 2213 Office Hours: BY APPOINTMENT
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS 173 Announcements Hwk #11 available, due 4/23, 8a Final Exam:  5/10, 7-10p, Siebel 1404 Problem #13 available today.
Background image of page 2
Cs173 - Spring 2004 CS173 Properties of Relations - techniques… Let R be a relation on positive integers, R={(x,y): 3|(x-y)} Yes Is R transitive? Suppose (x,y) and (y,z) are in R. Then we can write 3j = (x-y) and 3k = (y-z) Definition of  “divides” Can we say 3m = (x-z)?  Is (x,z) in R? Add prev eqn to get: 3j + 3k = (x-y) + (y-z)  3(j + k) = (x-z) 
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS173 Properties of Relations - techniques… Let R be a relation on positive integers, R={(x,y): 3|(x-y)} Yes Is R transitive? Is it reflexive? Yes Is (x,x) in R, for all x? Does 3k = (x-x) for some k? Definition of  “divides” Yes, for k=0.
Background image of page 4
Cs173 - Spring 2004 CS173 Properties of Relations - techniques… Let R be a relation on positive integers, R={(x,y): 3|(x-y)} Yes Is R transitive? Is it reflexive? Yes Is it symmetric? Yes Suppose (x,y) is in R. Then 3j = (x-y) for some j. Definition of  “divides” Yes, for k=-j. Does 3k = (y-x) for some k?
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS173 Properties of Relations - techniques… Let R be a relation on positive integers, R={(x,y): 3|(x-y)} Yes Is R transitive? Is it reflexive? Yes Is it symmetric? Yes Is it anti-symmetric? No Suppose (x,y) is in R. Then 3j = (x-y) for some j. Definition of  “divides” Yes, for k=-j. Does 3k = (y-x) for some k?
Background image of page 6
Cs173 - Spring 2004 CS173 More than one relation Suppose we have 2 relations, R 1  and R 2 , and recall that relations are just sets!  So we can take unions, intersections, complements,  symmetric differences, etc. There are other things we can do as well…
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS173 More than one relation Let R be a relation from A to B (R   AxB), and let S be a relation from B to C  (S   BxC).  The composition of R and S is the relation from A to C (S °   AxC): S ° R = {(a,c):  5  b B, (a,b)   R, (b,c)   S} S ° R = {(1,u),(1,v),(2,t),(3,t),(4,u)} A B C 1 2 3 4 x y z s t u v R S
Background image of page 8
Cs173 - Spring 2004 CS173 More than one relation Let R be a relation on A. Inductively define R 1  = R R n+1  = R n   °  R R 2  = R 1 ° R = {(1,1),(1,2),(1,3),(2,3),(3,3),(4,1), (4,2)} A A A 1 2 3 4 1 2 3 4 R R 1 1 2 3 4
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS173 More than one relation Let R be a relation on A. Inductively define R 1  = R R n+1  = R n   °  R R 3  = R 2 ° R = {(1,1),(1,2),(1,3),(2,3),(3,3),(4,1),(4,2),(4,3)} A A A 1 2 3 4 1 2 3 4 R R 2 1 2 3 4 … = R4  = R5  = R6… 
Background image of page 10
Cs173 - Spring 2004 CS173 Relations - A Theorem: If R is a transitive relation, then R n    R,  2200 n.
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/15/2008 for the course CS 173 taught by Professor Fleck@shaffer during the Spring '08 term at University of Illinois at Urbana–Champaign.

Page1 / 32

lec0420 - CS 173: Discrete Mathematical Structures Cinda...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online