This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CS 173: Discrete Mathematical Structures Cinda Heeren [email protected] Siebel Center, rm 2213 Office Hours: BY APPOINTMENT Cs173  Spring 2004 CS 173 Announcements Hwk #10 available, due 4/16, 8a Final Exam: 5/10, 710p, Siebel 1404 Cs173  Spring 2004 Here’s one for you to try: a n = 4a n1  5a n2 + 2a n3 , n ≥ 3 a = 0, a 1 = 1, a 2 = 2 CS 173 Recurrences Cs173  Spring 2004 Linear NONhomogeneous recurrence relations with constant coefficients. CS 173 Recurrences c a n + c 1 a n1 + c 2 a n2 + … + c k a nk = f(n), Where f(n) is constant polynomial in n c n for some constant c c n ∙ polynomial(n) This approach is different than the one in your text. Easier and more general. Cs173  Spring 2004 First, some notation: CS 173 Recurrences A sequence a , a 1 , a 2 , …, is denoted 〈 a n 〉 Examples 〈 2 n 〉 = 1,2,4,8,… 〈 n 2 〉 = 0,1,4,9,… 〈 n 〉 = 0,1,2,3,… Note: if 〈 a n 〉 and 〈 b n 〉 are sequences, then 〈 a n 〉 + 〈 b n 〉 represents the sequence 〈 a n + b n 〉 (termwise addition). Cs173  Spring 2004 Sequence operators: CS 173 Recurrences Constant multiplication c∙ 〈 a n 〉 defined to be 〈 c∙a n 〉 Ex: 3∙ 〈 2 n 〉 = 〈 3∙2 n 〉 = 3, 6, 12, 24, 48, … Shift “E” E 〈 a n 〉 = 〈 a n+1 〉 shifts sequence to left Ex: E 〈 2 n 〉 = 〈 2 n+1 〉 = 2, 4, 8, 16, … Ex: E 〈 3n + 1 〉 = 〈 3(n+1) + 1 〉 = 〈 3n + 4 〉 Cs173  Spring 2004 Combining operators: CS 173 Recurrences If A,B are seq ops, then A+B is a seq op: (A+B) 〈 a n 〉 defined to be A 〈 a n 〉 + B 〈 a n 〉 Ex: (E+2) 〈 2 n 〉 = E 〈 2 n 〉 + 2 〈 2 n 〉 = 〈 2 n+1 〉 + 〈 2∙2 n 〉 = 〈 2 n+1 〉 + 〈 2 n+1 〉 = 〈 2 n+1 + 2 n+1 〉 = 〈 2∙2 n+1 〉 = 〈 2 n+2 〉 If A,B are seq ops, then AB is a seq op: (AB) 〈 a n 〉 defined to be A(B 〈 a n 〉 ) Ex: E 3 〈 a n 〉 = E∙E∙E 〈 a n 〉 = E(E(E 〈 a n 〉 )) = 〈 a n+3 〉 Cs173  Spring 2004...
View
Full Document
 Spring '08
 [email protected]
 Algebra, Characteristic polynomial, Recurrence relation, Fibonacci number

Click to edit the document details