lec0214 - CS 173: Discrete Mathematical Structures Cinda...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
CS 173: Discrete Mathematical Structures Cinda Heeren heeren@cs.uiuc.edu Rm 2213 Siebel Center Office Hours: W 9:30-11:30a
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS 173 Announcements Homework 5 available.  Due 02/19, 8a. Midterm 1:  2/23/06, 7-9p, location SC 1404. Send me an email asap if you have a conflict. Sections next week will be exam review.   Three additional reviews:   Tues, 2/21, 6-7p, SC 1129 Thur, 2/23, 9:30-10:45a, SC 1404 Thur, 2/23, 11:00a-12:15, SC 1214
Background image of page 2
Cs173 - Spring 2004 CS 173 Summation How do you know this is true? ca i + b i ( ) i =1 k = c a i i =1 k + b i i =1 k Use associativity to separate the bs from the as. Use distributivity to factor the cs.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS 173 Summations you should know… What is S = 1 + 2 + 3 + … + n? You get n copies of (n+1).  But we’ve over added by a factor of 2!  So just divide by 2. S = 1 + 2 + + n S = n + n-1 + + 1 2s = n+1 + n+1 + + n+1 Write the sum. Write it again. Add together. k k =1 n = n ( n +1) 2
Background image of page 4
Cs173 - Spring 2004 CS 173 Summations you should know… What is S = 1 + 3 + 5 + … + (2n - 1)? Sum of first n odds. (2 k - 1) k =1 n = 2 k k =1 n - 1 k =1 n = 2 n ( n +1) 2 - n = n 2
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS 173 Summations you should know… What is S = 1 + 3 + 5 + … + (2n - 1)? Sum of first n odds. = n 2
Background image of page 6
Cs173 - Spring 2004 CS 173 Summations you should know… What is S = 1 + r + r 2  + … + r n Geometric Series r k k = 0 n =1+ r +K + r n r r k k = 0 n = r + r 2 r n +1 Multiply by r Subtract 2 nd  from 1 st r k k = 0 n - r r k k = 0 n =1- r n factor (1- r ) r k k = 0 n r n divide r k k = 0 n = 1- r n r ) DONE!
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Cs173 - Spring 2004 CS 173 Summations you should know… What about: r k k = 0 =1+ r +K + r n +K = n lim 1- r n +1 (1- r ) If r   1 this blows  up.
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/15/2008 for the course CS 173 taught by Professor Fleck@shaffer during the Spring '08 term at University of Illinois at Urbana–Champaign.

Page1 / 22

lec0214 - CS 173: Discrete Mathematical Structures Cinda...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online