1.8.2 Extra Factoring Worksheet - i 7 Exercise 0P 1 0 may Z 1 Factor fully 21 p2 Zpr r2 d v2 4v 3 g 7322 15y 2 2 Factor fully a 25x2 y2 d 49m2 64 g(x

1.8.2 Extra Factoring Worksheet - i 7 Exercise 0P 1 0 may Z...

This preview shows page 1 - 2 out of 2 pages.

Image of page 1

Subscribe to view the full document.

Image of page 2

Unformatted text preview: fifiiflfl. '_ 7 Exercise; _ 0P+1 0 may Z 1. Factor fully. 21. p2 + Zpr + r2 d. v2 + 4v + 3 g. 7322 + 15y + 2 2. Factor fully. a. 25x2 —' y2 d. 49m2' # 64 g. (x + n)2 - 9 @ Factor ffilly. a. kx+px—ky-py d. x~d+(x—d)2 OPfiOVICkl :7 @Factor fully. 21. 4x2 + 2x — 6 d. 8 + 24171 — 801112 g. 60322 — 10y — 120 V [:N ('2; CH 5. Factor fully. a. 360.36 - y)2 - 25(u - 2y)2 C. y5—y4+y3~y2+y-1 d. h. b. e. h. Fac+orm§ @MESHOWS 16n2+8n+1 2w2+3w+1 5x2—16x+3 m2 _ p2 pzr2 — 100x2 49u2 - (x — y)2 b- fic-gy+gx—J"y C. 4y2+4yz+z2—1 2852 + 851 - ZOI2 6x2 — 13x + 6 10x2 + 38x + 20 [9%w/ 9u2 + 30u + 25 f. 3k2+7k+2 3v2 ~11v +10 1 — 161”2 3 — may )6‘ —“ 16 h3+112+h+1 f. xl—y2+z3*2xz . y2 — (r — n)2 f. i. w+w~w~5 27x2 — 48 b. g(1—x)— gx + gxz n4 + 21121422 + W4 e. 9(x + 2y + z)2 — 16(x — 2y + 2)2 f. 8u2(u + 1) + 2u(u + 1) — 301+ 1) g. p2~2p+1—y2—2yZ~zz i. (1be + (an + bm)x + mn h. 9y4+12y2+4 j. x2+2+;13 CHAPTER 1 POLYNOMIAL FUNCTIONS Review of Prerequisite Skills 1.3:). mppgza-mnprhmps-waprm . (ax + m)(bx + n) j. (x + “)2 (P + r)2 b. (4n + [)2 C. (3n + S)2 d. (v + 3)(v + 1) . (2w + 1)(w + 1) f. (3k + 1)(k + 2) 9}. (7y + l)(y + 2) . (5x — 1)(x - 3) 3. (3V ~ 5)(v ~ 2) (5x - y)(5x + y) b. (m — p)(m + p) C. (1 " 41‘)(I + 4r) . (7m — 8)(7m + 8) e. (pr — 101‘)er + 10x) 3(1 — 4)!)(1 + 4y) 9. (x + 11 + 3)(x +11 — 3) . (7L1 + x — y)(7u — x + y) i. (x2 + 4)(x + 2)(x — 2) (k + p)(.t -—~ y) b. (f+ g)(x — y) C. (h + l)(h2 + I) .(x—-d)(l+x-d) e.(2y+z—l)(2y+z+1) (x-z*.v)(X~z+y) 2(2): + 3)(x — I) b. 4(7s — 5[)(S + t) (y + r -— Iz)(y - r + n) d. 8(1 + 5m)(1 ~ 2171) . (3x — 2)(2x — 3) f. (y + my! — 5) g. 10(3y + 4)(2y — 3) . 2(5x2 + 19): + 10) i. 3(3x ' 4)(3x + 4) (12x + 437 —- Su)(12x '- 16)» + Su) b. g(l — x)(1 + x) (y - UL);4 + y3 + 1) d. (n2 + wl)2 (—x + My —— z)(7x — 2y + 7z) f. (u + 1)(4u + 3)(2u — 1) . (p ~ 1+ y'+ z)(p — l —y * 2) h. (3322 +2)2 1 X Factoring Worksheet Section 1 : Common Factoring i 4x—1 6 ii -8x-18 iv 32xy-18x2 v 10xy-15x2 vii 8(x+2)-y(x+2) ' viii -40x3y6-16x9ys x * 182:3}23-12x’yz+6x5y2 Section 2: Simple Trinomials i ' X2+7x+6 ii x2+6x+8 iv x2—8x+l 5 v“ x2—3x-1 8 vii xz+5x+2 viii X2—16x+48 X x2— 1 9x+8 8 Section 3 : Simple Trinomials with Two Variables i 3c1+8xy+15y2 ii x2+6xy+8yz iv XZ—i 1xy+30yz v XZ—4xy-77y2 vii xz-3xy-4y2 viii x2y2+4xy+4 iii vi ix iii iii vi -6x—40 4x-8y+4 21x3y-49x2y2 x2+9x+20 xz—x—30 K X2-16x+63 xz-waz x2+7xy+1 0y2 Section 4: Trinomials Which can be turned into Simple Trinomials by First Common Factoring i 2x2+20x+32‘ ii 3x2+30x+63 iv x3—Jr7-56x v 2x2+24x+64 Section 5: Complex Trinomials i 2x3+7x+5 ii 2x2+13x+15 iv 2x2-9x-5 v 3xz+20x-63 vii 25x2+20x+4 viii 10xz+17x+3 x 4x2-8x—21 Section 6 : Difference of Squares i xZ-4 ‘ ii X2-36 iv 4x24 v 9362—4 vii 25-y2 viii 36x2—25yZ ' x x2yz-1 Section 7 : Perfect Square Trinomials i x2- 1_4xy+49y2 ii x2+10xy+25y2 iv 4x2—36xy+81y2 v 493cz+42xy+9y2 vii 4x2y2-2 8xy+49 viii 9x2-24xy+1 6y2 Section 8 : Factoring By Grouping i 5x+15+ng+3 y ii xy+y+2x+2 iv 6x-42+xy—7y ' v xy—2yz+5x- 1 02 iii vi iii vi ix iii ‘vi iii vi iii vi 2x34 8x2+40x 2x5-1 43642439 ~ 3x2+8x+4 8x24 7x+9 16x2-40x+25 i 16x2+24xy+9f 16x2-8xy+yz 2y—8+xy-4x x3+3x2+x+3 -. ...
View Full Document

  • Spring '15

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Ask Expert Tutors You can ask 0 bonus questions You can ask 0 questions (0 expire soon) You can ask 0 questions (will expire )
Answers in as fast as 15 minutes