Quiz 3_columns

Quiz 3_columns - Inference on the Means of 2 Populations...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Inference on the Means of 2 Populations, Variances  Known Assumptions: Both samples are random samples,  independent, and are normal (if not normal, C.L.T. apply) E(Xbar1 – Xbar2) = E(Xbar1) – E(Xbar2) =  1- 2 μ μ V(Xbar1-Xbar2)=V(Xbar1)+V(Xbar2)= Hypothesis Testing on the Difference in Means,  Variances Known Null hypothesis:  1- 2 = delta_0 μ μ Test stat: Alternative Hyp: != delta_0—P-value: P above Z_0 and  P below –Z_0, P = 2[1-phi(|Z_0|)] Rejection: Z_0 > Z_a/2 or Z_0 < -Z_a/2 Hyp > Delta_0—P-value: P above Z_0, P = 1-phi(Z_0),  reject Z_0 > Z_a Hyp < Delta_0—P-value: P below Z_0, P = phi(Z_0),  reject Z_0 < Z_a Type II Error and Choice of Sample Size Sample Size for 2-sided Alt Hyp. On Difference in  Means, Variances known, n1=n2 For one-sided: Confidence Intervals on the Difference in Means,  Variances Known Sample Size for a specified E on the Difference in  Means, and variances known when n1=n2 Inference on the Means of Two Populations,  Variances Unknown Hypothesis Testing on the Difference in Means Pooled estimator of  σ 2  = S p 2 : Alt. Hyp: != delta_0: P-value: Sum of P above t_0 and  below –t_0. Reject if t_0>
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/17/2008 for the course IEE 380 taught by Professor Anderson-rowland during the Spring '06 term at ASU.

Page1 / 3

Quiz 3_columns - Inference on the Means of 2 Populations...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online