Quiz 3_columns - Inference on the Means of 2 Populations...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Inference on the Means of 2 Populations, Variances  Known Assumptions: Both samples are random samples,  independent, and are normal (if not normal, C.L.T. apply) E(Xbar1 – Xbar2) = E(Xbar1) – E(Xbar2) =  1- 2 μ μ V(Xbar1-Xbar2)=V(Xbar1)+V(Xbar2)= Hypothesis Testing on the Difference in Means,  Variances Known Null hypothesis:  1- 2 = delta_0 μ μ Test stat: Alternative Hyp: != delta_0—P-value: P above Z_0 and  P below –Z_0, P = 2[1-phi(|Z_0|)] Rejection: Z_0 > Z_a/2 or Z_0 < -Z_a/2 Hyp > Delta_0—P-value: P above Z_0, P = 1-phi(Z_0),  reject Z_0 > Z_a Hyp < Delta_0—P-value: P below Z_0, P = phi(Z_0),  reject Z_0 < Z_a Type II Error and Choice of Sample Size Sample Size for 2-sided Alt Hyp. On Difference in  Means, Variances known, n1=n2 For one-sided: Confidence Intervals on the Difference in Means,  Variances Known Sample Size for a specified E on the Difference in  Means, and variances known when n1=n2 Inference on the Means of Two Populations,  Variances Unknown Hypothesis Testing on the Difference in Means Pooled estimator of  σ 2  = S p 2 : Alt. Hyp: != delta_0: P-value: Sum of P above t_0 and  below –t_0. Reject if t_0>
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern