Quiz 3_columns

# Quiz 3_columns - Inference on the Means of 2 Populations...

This preview shows pages 1–2. Sign up to view the full content.

Inference on the Means of 2 Populations, Variances  Known Assumptions: Both samples are random samples,  independent, and are normal (if not normal, C.L.T. apply) E(Xbar1 – Xbar2) = E(Xbar1) – E(Xbar2) =  1- 2 μ μ V(Xbar1-Xbar2)=V(Xbar1)+V(Xbar2)= Hypothesis Testing on the Difference in Means,  Variances Known Null hypothesis:  1- 2 = delta_0 μ μ Test stat: Alternative Hyp: != delta_0—P-value: P above Z_0 and  P below –Z_0, P = 2[1-phi(|Z_0|)] Rejection: Z_0 > Z_a/2 or Z_0 < -Z_a/2 Hyp > Delta_0—P-value: P above Z_0, P = 1-phi(Z_0),  reject Z_0 > Z_a Hyp < Delta_0—P-value: P below Z_0, P = phi(Z_0),  reject Z_0 < Z_a Type II Error and Choice of Sample Size Sample Size for 2-sided Alt Hyp. On Difference in  Means, Variances known, n1=n2 For one-sided: Confidence Intervals on the Difference in Means,  Variances Known Sample Size for a specified E on the Difference in  Means, and variances known when n1=n2 Inference on the Means of Two Populations,  Variances Unknown Hypothesis Testing on the Difference in Means Pooled estimator of  σ 2  = S p 2 : Alt. Hyp: != delta_0: P-value: Sum of P above t_0 and  below –t_0. Reject if t_0>

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern