# homework4 - F(w lO(jw 1)2 a E[fm|f(t)2dt/R 2fmt2e‘2‘dt...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: F(w) - lO/(jw+ 1)2. a) E - [fm|f(t)2dt]/R - 2fmt2e‘2‘dt - 0.5 J. _., o 2 100 1 2 - b) 2[*J___ dw] .. i + Etan 1(1) - 81.8%. 0 c) 2 [—Z—J———IQQ—— dw} =- % [tan'1(5) - tan-1(3)] - 1—: - 10.6%. 3 65 O a 1 a)P-ziﬁ£8f(w)dw-z%f[ H + 600-2)] dw - — + 1 - 0.818 w. o w2+l 2 E 1.1 b) ﬁofg [130; + 6(w~2)] dw - %[can-1(1.1) - tan'1(0.9)] = 0.0319 w. 5.1 i 1 +6 -2 dw-lc’12.1-c‘11.9+1=0331w c) bl» 1J9 (w "I: an ( ) an ( ) ] , . d) Using the results of Ex. 4.2.1, the two impulse functions can be associated with a signal 42/11’ cos 2t. Because this is a power spectral density, we cannot associate the term (t1.)2+l)'1 directly with an exponential signal. From Eq. (4.21), we see that it can be associated with a constant (1) power spectral density through 3. RC low-pass filter with RC=1. Because the phase is not included, these results are not unique, and other solutions are possible. ) 11020:) - [(10mV)/10]2 - 1 x 10-6 V2. Also, we can write: n°2(t,_%f_1mﬂz_dw__n__ o (02 + 1/(RC)2 “RC Setting these two results equal, we get: 71 - ARC x 10'6 W/Hz. b) v°(t) - ——1ﬂ§l—— ﬁcosnonc - tan'1(307rRC)]; J(30«)2 + 1/(RC)2 1 (RC 2 2 . 10 v2 t - ___Z__L___ _ 10 mv ; solvm , RC .. _ _ 1,051 _ ° ( ) (3O1r)2+1/(RC)2 ( ) 8 3” sec P4.3.3 a) Same answer as a) of Problem 4.3.2; no changes. O 1 1 1 Rc)2 1 b) V3“) ' FL?” m d” ' arm ' (1° “‘V’z- 0 Solving, we get: RC - 5 x 103 sec. / ra.4.1 T/Z a) Rim - .,}_, f/zFl‘e"”°‘F1e‘”°“"’dt - |F1|2e‘”°'; '1 s50») - 5mm} - 21r|F1126(w- we). 1'l2 — t' ' Z t + 2 b) 112(1) .. %—J;2[F1te duo + sze J 00 MFleJuom 1) + erj 0°(t+r)] dt Rim - IF1|2e3“°' + Ileze‘2“°'; stag) - 2«|F1|26(w—wo) + ZKIFZIZMw- 2%). 0 c) The cross-terms integrate to zero and we get: R£(r) - X anlzedmof; “3-0 I) Sim) - 211’ 2 [Fn|26(w-nwu). [See Eq. (4.20)] Etyme correlation fns. below are zero outside of intervals given. a For -l<1<0: rx(r)-jf+1dt - 1+1; For 0<r<1z rx(r) —f1dt - l-r. Combining these results, owe have: rx(r) - A(r). T b) For -1<¢<o: ry(7) — {mcu- 7) dt - %(2 - r)(r+1)2; 1 For 0<r<1: rym- ft(t-r)dt-16-(r3-3r+2). T +1 c)For-1<r<0: rxy(r)-{ (c-r)dc-12-(1-12); 1 For O<r<1: rum - {(t-r)dt-%(r-1)2. Graphs of these results are shown. ...
View Full Document

## This note was uploaded on 09/23/2008 for the course ELE 360 taught by Professor Liu during the Fall '08 term at Northern Illinois University.

### Page1 / 2

homework4 - F(w lO(jw 1)2 a E[fm|f(t)2dt/R 2fmt2e‘2‘dt...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online