chapter1ProblemsAndSolutions

chapter1ProblemsAndSolutions - Chapter 1 Areas, volumes and...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 1 Areas, volumes and simple sums 1.1 Answer the following questions: (a) What is the value of the fifth term of the sum S = 20 k =1 (5 + 3 k ) /k ? (b) How many terms are there in total in the sum S = 17 k =7 e k ? (c) Write out the terms in 5 n =1 2 n- 1 . (d) Write out the terms in 4 n =0 2 n . (e) Write the series 1 + 3 + 3 2 + 3 3 in summation notation in two equivalent forms. Detailed Solution: (a) a 5 = (5 + 3 5) / 5 = 4. (b) First term has index k = 7, and last term k = 17. Thus there are 17- 7 = 10 terms. (c) 2 + 2 1 + 2 2 + 2 3 + 2 4 (d) 2 + 2 1 + 2 2 + 2 3 + 2 4 v.2005.1 - January 3, 2006 1 Math 103 Problems Chapter 1 (e) 3 n =0 3 n and 4 n =1 3 n- 1 . 1.2 Summation notation (a) Write 2 + 4 + 6 + 8 + 10 + 12 + ... in summation notation. (b) Write 1 + 1 2 + 1 3 + 1 4 + ... in summation notation. (c) Write out the first few terms of 100 summationdisplay i =0 3 i (d) Write out the first few terms of summationdisplay n =1 1 n n (e) Simplify summationdisplay k =5 2 k + 4 summationdisplay k =2 2 k (f) Simplify summationdisplay x =0 3 x- summationdisplay x =10 3 x (g) Simplify 100 summationdisplay n =0 n + 100 summationdisplay n =0 n 2 (h) Simplify 2 100 summationdisplay y =0 y + 100 summationdisplay y =0 y 2 + 100 summationdisplay y =0 1 Detailed Solution: (a) summationdisplay n =1 2 n (b) summationdisplay n =1 1 n (c) 1 + 3 + 9 + 27 + 81 + 243 + ... (d) 1 + 1 2 2 + 1 3 3 + 1 4 4 + ... (e) summationdisplay k =2 2 k v.2005.1 - January 3, 2006 2 Math 103 Problems Chapter 1 (f) 9 summationdisplay x =0 3 x (g) 100 summationdisplay n =0 ( n + n 2 ) (h) 100 summationdisplay y =0 ( y + 1) 2 1.3 Show that the following pairs of sequences are equivalent: (a) 10 summationdisplay m =0 ( m + 1) 2 and 11 summationdisplay n =1 n 2 (b) 4 summationdisplay n =1 ( n 2- 2 n + 1) and 4 summationdisplay n =1 ( n- 1) 2 Detailed Solution: (a) 10 summationdisplay m =0 ( m + 1) 2 = 1 + 2 2 + 3 2 + 4 2 + 5 2 + ... + 11 2 11 summationdisplay n =1 n 2 = 1 + 2 2 + 3 2 + 4 2 + 5 2 + ... + 11 2 (b) 4 summationdisplay n =1 n 2- 2 n + 1 = (1- 2 + 1) + (4- 4 + 1) + (9- 6 + 1) + (116- 8 + 1) = 0 + 1 + 4 + 9 4 n =1 ( n- 1) 2 = 0 2 + 1 2 + 2 2 + 3 2 = 0 + 1 + 4 + 9 1.4 Compute the following sums: (a) 290 summationdisplay i =1 1 (b) 150 summationdisplay i =1 2 (c) 80 summationdisplay i =1 3 (d) 50 summationdisplay n =1 n (e) 60 summationdisplay n =1 n (f) 60 summationdisplay n =10 n (g) 100 summationdisplay n =20 n (h) 25 summationdisplay n =1 3 n 2 v.2005.1 - January 3, 2006 3 Math 103 Problems Chapter 1 (i) 20 summationdisplay n =1 2 n 2 (j) 55 summationdisplay i =1 ( i + 2) (k) 75 summationdisplay i =1 ( i + 1) (l) 500 summationdisplay k =100 k (m) 100 summationdisplay k =50 k (n) 50 summationdisplay k =2 ( k 2- 2 k + 1) (o) 50 summationdisplay k =5 ( k 2- 2 k + 1) (p) 20 summationdisplay m =10 m 3 (q) 15 summationdisplay m =0 ( m + 1) 3 For the solutions to these, we will use several summation formulae, and the notation shown...
View Full Document

Page1 / 19

chapter1ProblemsAndSolutions - Chapter 1 Areas, volumes and...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online