Econometrics-I-4 - Applied Econometrics William Greene...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Applied Econometrics William Greene Department of Economics Stern School of Busines
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Applied Econometrics 4. Least Squares Algebra: Partial Regression and Correlation
Background image of page 2
Frisch-Waugh (1933) Theorem Context :  Model contains two sets of variables:         X   =  [ [1, time ] | [  other variables ]]             =  [ X 1    X 2 Regression model:         y   =   X 1 β 1   +  X 2 β 2  +  ε    (population)           =   X 1 b 1   +  X 2 b 2  +  e   (sample) Problem :  Algebraic expression for the second set  of least squares coefficients,  b 2  
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Partitioned Solution computation was not trivial!) Direct manipulation of normal equations (text p. 26-27)  produces       b 2   =  ( X 2 X 2 ) -1 X 2 ( y  -  X 1 b 1 )             What is this?   Regression of ( y  -  X 1 b 1 ) on  X 2 Important result (perhaps not fundamental).  Note the result  if  X 2 X 1  =  0 .         Useful: Probably       Likely?  Don’t count on it.
Background image of page 4
Partitioned Inverse     Use of the partitioned inverse result produces a  fundamental result: What is the southeast  element in the inverse of the moment matrix?  1 1 1 2 2 1 2 2 -1 X 'X X 'X X 'X X 'X
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Partitioned Inverse      The algebraic result is:      [ ] -1 (2,2)   =  {[ X 2 X 2 ] -  X 2 X 1 ( X 1 X 1 )-1 X 1 X 2 } -1                =  [ X 2 ’( I  -  X 1 ( X 1 X 1 ) -1 X 1 ’) X 2 ] -1                  =  [ X 2 M 1 X 2 ] -1   Note the appearance of an “ M ” matrix.  How do  we interpret this result? Note the implication for the case in which 
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/27/2008 for the course FM 101 taught by Professor Greece during the Spring '08 term at New York College of Podiatric Medicine.

Page1 / 21

Econometrics-I-4 - Applied Econometrics William Greene...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online