Theory of Inventive Problem Solving Overview

Theory of Inventive Problem Solving Overview - TRIZ...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
TRIZ 1 of 27 10/31/07 9:09 AM Theory of Inventive Problem Solving (TRIZ) 1.0 Introduction Following World War II, the high quality, technologically advanced products of the United States dominated world markets. With the oil shock of the 1970s, however, many of the economic advantages associated with cheap petroleum were lost and the recovered economies of Europe and Asia emerged as strong competitors in many product areas. The innovative technologies of the US could no longer insulate industries from the customer oriented approaches of European and Asian producers. The 1990s have seen the recovery of many US industries, most notably the automotive industry. This has been due in part to the influence of many Japanese quality methodologies introduced here by the late Dr. Kaoru Ishikawa, Dr. Masao Kogure, Dr. Yoji Akao, Dr. Noriaki Kano, Mr. Masaaki Imai, and many others. These quality methods have helped US industries reduce defects, improve quality, lower costs, and become more customer focused. As the quality gap with countries like Japan gets smaller, the US is looking for new approaches to assure customer satisfaction, reduce costs, and bring products to the market faster. In the US, we say "better, cheaper, faster." While there are many widely used design and development approaches such as Quality Function Deployment, these show us what to solve but not always how to solve the technology bottlenecks that arise. One technique, the Reviewed Dendrogram, relies on the experience of designers which may be limited to certain areas of expertise such as chemistry or electronics. Thus, a solution that might be simpler and cheaper using magnetism could be missed. For example, a materials engineer searching for a dampener may limit his search to rubber based materials. A more efficient solution might lie in creating a magnetic field. Since this is outside the experience of the engineer, how could he imagine such a solution? Using TRIZ, he would be able to explore design solutions in fields other than his own. Rockwell International's Automotive Division faced a problem like this. They were losing a competitive battle with a Japanese company over the design of brakes for a golf cart. Since both Rockwell and the Japanese competitor were in the automotive field, they were competing on redesigns of an automobile brake system but with smaller components. In TRIZ, this seeking solutions only in one's field is called "psychological inertia" because it is natural for people to rely on their own experience and not think outside their specialty. With TRIZ, the problem was solved by redesigning a bicycle brake system with larger components. The result was a part reduction from twelve to four parts and a cost savings of 50%. 2.0 The History of TRIZ
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/18/2008 for the course FS 301 taught by Professor Wood during the Fall '07 term at University of Texas.

Page1 / 27

Theory of Inventive Problem Solving Overview - TRIZ...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online