05_04_29 - 168 The radial part of the wave function&2 L(r = E r V r r 1 2m(p 2 r 1 r2(r = Rnl(r f e2 1 4 0 r pr2 = 2 2 1 2 r r 2(r 2 l l 1 1 2m r2

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
[email protected] 168 The radial part of the wave function 04/29/2005 7KH±HIIHFWLYH±UDGLDO±SRWHQWLDO² 2 2 2 2 2 2 0 ( 1) 1 1 1 4 2 2 [ ] ( ) l l e nl nl nl r m m r r r R rR E R πε + - - - = 2 2 2 1 1 2 ˆ ˆ ( ) ( , , ) ( ) ( , , ) ( , , ) r m r V r r p L r E r ϑϕ Φ + + Φ = Φ 2 2 2 2 1 ˆ ( , , ) ( ) ( , ) , ( ) nl r r r r R r f p r Φ = Φ = - Φ ! ( ) eff V r ( ) V r 2 2 ( 1) 1 2 l l m r + E r ] [ ] [ ] [ 2 2 0 0 2 0 2 0 0 0 2 2 2 0 2 ) 1 ( 2 1 ) / ( ) 1 ( 2 8 / 2 8 ) 1 ( 2 4 ξ + + + - - = - - = - - = l l a r l l a me a r a e r l l m r e eff E V
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
[email protected] 169 Energy and angular momentum 04/29/2005 ( ) eff V r E r 2U±² YLVXDO²UHDVRQLQJ ³ (²KDV²WR²EH²ELJJHU²WKDQ 9 2 2 3 min min 2 1 ( 1) 2 ( 1) 2 min 2 1 1 min ( 1) 2 0 ( 1) ( 1) l l eff l l eff E l l E n V V l l V l l n ξ + + + = - + = - = = + - = = + 1 l n - min V WXUQV²RXW²WR²EH²LQGHSHQGHQW²RI²O´ 0 0 2 2 2 8 1 1 1 , a e n n n E E E πε - = = } 1 , , 0 { - n l ±
Background image of page 2
[email protected] 170 The complete wave function 04/29/2005 all all ( , , ) ( ) ( , ) l nl m nl l m n l m l r A R r Y ϑϕ
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/28/2008 for the course PHYS 316 taught by Professor Hoffstaetter during the Spring '05 term at Cornell University (Engineering School).

Page1 / 3

05_04_29 - 168 The radial part of the wave function&2 L(r = E r V r r 1 2m(p 2 r 1 r2(r = Rnl(r f e2 1 4 0 r pr2 = 2 2 1 2 r r 2(r 2 l l 1 1 2m r2

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online