Phy_Cheat_Sheet-print

# Phy_Cheat_Sheet-print - Math Primer Sphere V= 4/3r A=4r Box...

This preview shows pages 1–2. Sign up to view the full content.

Math Primer Sphere V= 4/3πr³ A=4πr² Box A= 2(ab +ac +bc) Cylinder V=πr²h A=2πr² + 2πrh Chapter 2 For Constant a v² = v o ² + 2a(x-x o) Chapter 3 Projectile Motion y=y o + xtan Ө o - g x² . 2v o cos² Ө o R = (v o ²/g)(sin 2 Ө o ) H = y o + v yo ²/(2g) v yo=vert comp of vo Chapter 4 T=mg/(2n) n= #times rope over pulleys Sign: mg(l/2)sin90˚ +Mgrsin90˚ - Tlsin Ө = 0 m = post M=sign l=length of post r=d to sign = angle tween cable & post T=tension Ө Free Fall : Term Veloc v=√(mg/k) k=½C d Ap Cd=drag coef A=S.A. p=air dens Ladder : ½m l g + m m g(r/l)tan Ө = R ½m l +m m (r/l)tan Ө ≤µ(m l + m m ) ml=m ladder l=length lad mm= m man r = dist to man N=normal floor R= normal wall = tween ladder & wall Ө Chapter 5: Work, Kin Energy, Power K=½mv² 1J=1Nm=kgm²/s² 1eV = 1.602 10^(-19) J 1Cal = 4186 J 1 Mt= 4.00 10^15 J W=FΔrcosα α=90˚ =no work W=F·Δr ΔK=W Motion Up: W g = -mgh Down: W g =mgh W f = -W g W = ∫F(x)dx Springs : F= -kx W = -½kx² Power : 1W = 1J/s 1kWh = 3.6 10^6 J 1hp = 550 ft lb/s = 746 W P = dW/dt Avg P = W/(Δt) P=Fvcos(α Fv ) Chapter 6 : PE and Energy Conserv U=mgh E= K+U ΔU= -W ΔK = W Trapeze: E=mgl(1-cos ) + ½mv² Ө Springs (see chap 5): U=½kx² E=½kA² A=amplitude |v| = √[(A² - x²)(k/m)] Chapter 7 : Momentum & Collisions p=mv F = dp/dt K= p²/(2m) Impulse : J = ∫Fdt J=Δp J=F av Δt Elastic Collisions : p f,1 = (m 1 – m 2 ) p i,1 +( 2m 1 ) p i,2 (m 1 + m 2 ) (m 1 + m 2 ) p f,1 =p i,2 p f,2 =p i,1 ( special case m 1 =m 2 ) p f,1 = 2m 1 p i,2 p f,2 =(m 2 -m 1 ) p i,2 (m 1 +m 2 ) (m 1 +m 2 ) Special Case (Above) p i,1 = 0 Coeff of Restitution : ε =|v f,1 –v f,2 | ε = √(h f /h i ) h f =ε²h i |v i,1 –v i,2 | ΔK = ½ m 1 m 2 (1-ε²) (v i,1 -v i,2 (m 1 +m 2 ) Ө f = arctan( p f,┴ / p f,║ ) = arctan(ε p i,┴ / p i,║ ) < Ө i Ө f = arctan(ε tan( Ө i)) Chapter 8: Sys of Particles & Extended Objects (1/M)∑r i m i from i=1 to n M= m 1 +m 2 +…+m n Blocks : x 1 =x n +½L∑(1/i) from i=1 to n-1 n=#blocks xn=0 L=length of blocks Spherical Coordinates : x = rcosφsinυ y=rsinφsinυ z=rcosυ r = √(x² + y² + z²) υ=arccos(z/ r) φ=arctan(y/x) Cylindrical Coordinates : x=r cosφ y= r sinφ z=z r = √(x² + y²) φ= arctan (y/x) z=z (Picture goes here: Cannon Recoil : b= cannon ball cn=cannon Ө = 45˚ v b =√(gR/2) R=max range v cn =-(m b /m cn )v b Rocket Motion : v f -v i = v c ln(m i /m f ) vc=vel of propellant Chapter 9: Circular Motion Pol Coordinates : r=√(x² +y²) =arctan(y/x) Ө x=rcos y=rsin Ө Ө avg ω= Δ /Δt ω= d /dt ω=rad/s ω=2πf Ө Ө T = period (in t) of rotation f= frequency T=1/f avg α=Δω/Δt α=dω/dt s = r Ө v = rω a t = rα a c = ω²r = v²/r vec a = vec a t – veca c Chapter 10: Rotation K = ½mr²ω² K=½Iω² constant ρ I=(M/V)∫r ²dV I = ½M(R 1 ² + R 2 ²) (hollow cylinder) I = ½MR² (solid cylinder) I = MR² (cylinder thin shell) I = ¼MR² + (1/12) Mh² (solid cylinder, perpendicular) I = (1/12) Mh² (thin rod of length h, perpendicular) I = (2/5) MR² (solid sphere) I = (2/3) MR² (thin spherical shell) I = (1/12) M(a² + b²) (rectangular block) (pictures to right): 1 sidereal day= 86164 s Parallel Axis Thm : I = I cm + Md² Rolling : K = Ktrans + Krot = ½mv² + ½Iω² = (1+c)½ mv² Loops : h > ½(5+c)R N 2 nd Law: τ = Iα vecτ = vecr x vecF vecC= vecA x vecB |C|=|A||B|sin Ө Ang Momentum : vecL = vecr x vecp L = rpsin Ө dL/dt = τ Rigid Objects : L=Iω

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern