Phy_Cheat_Sheet-print

Phy_Cheat_Sheet-print - Math Primer Sphere V= 4/3r A=4r Box...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math Primer Sphere V= 4/3πr³ A=4πr² Box A= 2(ab +ac +bc) Cylinder V=πr²h A=2πr² + 2πrh Chapter 2 For Constant a v² = v o² + 2a(x-xo) Chapter 3 Projectile Motion y=y o + xtan Ө o - g x² . 2v ocos² Ө o R = (v o²/g)(sin 2 Ө o) H = y o + vyo²/(2g) vyo=vert comp of vo Chapter 4 T=mg/(2n) n= #times rope over pulleys Sign: mg(l/2)sin90˚ +Mgrsin90˚ - Tlsin Ө = 0 m = post M=sign l=length of post r=d to sign Ө Free Fall : Term Veloc v=√(mg/k) k=½C dAp Cd=drag coef A=S.A. p=air dens Ladder : ½m lg + mmg(r/l)tan Ө = R ½m l +mm(r/l)tan Ө ≤µ(m l + mm) ml=m ladder l=length lad mm= m man r = dist to man N=normal floor R= normal wall Ө Chapter 5: Work, Kin Energy, Power K=½mv² 1J=1Nm=kgm²/s² 1eV = 1.602 10^(-19) J 1Cal = 4186 J 1 Mt= 4.00 10^15 J W=FΔrcosα α=90˚ =no work W=F·Δr ΔK=W Motion Up: W g= -mgh Down: W g=mgh W f = -Wg W = ∫F(x)dx Springs : F= -kx W = -½kx² Power : 1W = 1J/s 1kWh = 3.6 10^6 J 1hp = 550 ft lb/s = 746 W P = dW/dt Avg P = W/(Δt) P=Fvcos(α Fv ) Chapter 6 : PE and Energy Conserv U=mgh E= K+U ΔU= -W ΔK = W Trapeze: E=mgl(1-cos ) + ½mv² Ө Springs (see chap 5): U=½kx² E=½kA² A=amplitude |v| = √[(A² - x²)(k/m)] Chapter 7 : p=mv F = dp/dt K= p²/(2m) Impulse : J = ∫Fdt J=Δp J=F avΔt Elastic Collisions : p f,1= (m 1 – m 2 ) p i,1 +( 2m 1 ) p i,2 (m 1 + m2) (m 1 + m2) p f,1=pi,2 p f,2=pi,1 (special case m1=m2) p f,1= 2m 1 p i,2 p f,2=(m 2 -m 1 ) p i,2 (m 1+m2) (m 1+m2) Special Case (Above) p i,1 = 0 Coeff of Restitution : ε =|v f,1 –v f,2 | ε = √(h f/hi) h f=ε²hi |v i,1 –vi,2| ΔK = ½ m 1 m 2 (1-ε²) (v i,1-vi,2)² (m 1+m2) Ө f = arctan( pf,┴ / pf,║) = arctan(ε pi,┴ / pi,║) < Ө i Ө f = arctan(ε tan( Ө i)) (1/M)∑r imi from i=1 to n M= m 1+m2+…+mn Blocks : x 1=xn +½L∑(1/i) from i=1 to n-1 n=#blocks xn=0 L=length of blocks Spherical Coordinates : x = rcosφsinυ y=rsinφsinυ z=rcosυ r = √(x² + y² + z²) υ=arccos(z/ r) φ=arctan(y/x) Cylindrical Coordinates : x=r ┴ cosφ y= r┴ sinφ z=z r ┴ = √(x² + y²) φ= arctan (y/x) z=z (Picture goes here: Cannon Recoil : b= cannon ball cn=cannon Ө = 45˚ v b=√(gR/2) R=max range vcn=-(mb/mcn)vb Rocket Motion : v f-vi = vc ln(mi/mf) vc=vel of propellant Chapter 9: Circular Motion Pol Coordinates : r=√(x² +y²) =arctan(y/x) Ө x=rcos y=rsin Ө Ө avg ω= Δ /Δt ω= d /dt ω=rad/s ω=2πf Ө Ө T = period (in t) of rotation f= frequency T=1/f avg α=Δω/Δt α=dω/dt s = r Ө v = rω a t = rα a c = ω²r = v²/r vec a = vec a t – vecac Chapter 10: Rotation K = ½mr²ω² K=½Iω² constant ρ I=(M/V)∫r┴²dV I = ½M(R 1² + R2²) (hollow cylinder) I = ½MR² (solid cylinder) I = MR² (cylinder thin shell) I = ¼MR² + (1/12)Mh² (solid cylinder, perpendicular) I = (1/12)Mh² (thin rod of length h, perpendicular) I = (2/5)MR² (solid sphere) I = (2/3)MR² (thin spherical shell)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/28/2008 for the course PHY 183 taught by Professor Wolf during the Summer '08 term at Michigan State University.

Page1 / 3

Phy_Cheat_Sheet-print - Math Primer Sphere V= 4/3r A=4r Box...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online