MATH 1780 Lecture Notes Chapter 3 Section 3 and 4

MATH 1780 Lecture Notes Chapter 3 Section 3 and 4 -...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Consider the toss of a single weighted coin.   Suppose a 0 is recorder if the result is tails and a  1 is recorded if the result is heads.  If we let p  denote the probability that the coin lands on  heads, then (1-p) is the probability that it will land  on tails.  What is the probability distribution for this  experiment? x p(x) 0 1-p 1 p total 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
By looking at the table, you can give a simple  formula for p(x): p(x)=p x (1-p) 1-x . Thus p(0) = 1 – p, and p(1) = p. We call such a distribution a  Bernoulli  Distribution . A Bernoulli distribution is a single experiment  which has two possible outcomes, a success and  a failure. The probability of success will be denoted by p,  and the probability of failure is 1-p.
Background image of page 2
Let X have a Bernoulli Distribution, what is E(X)  and V(X)? Fill out the table:
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/30/2008 for the course MATH 1780 taught by Professor Snyder during the Fall '08 term at North Texas.

Page1 / 13

MATH 1780 Lecture Notes Chapter 3 Section 3 and 4 -...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online