MATH 1780 Lecture Notes Chapter 2 Section 2

# MATH 1780 Lecture Notes Chapter 2 Section 2 - MATH 1780...

This preview shows pages 1–5. Sign up to view the full content.

MATH 1780: Introduction to Probability Instructor: Jason Snyder

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Contents Section 2: A Brief Review of Set Notation Section 3: Definition of Probability Section 4: Counting Rules Useful in Probability Section 5: Conditional Probability and Independence Section 6: Rules of Probability
Suppose we have a set, U, of points labeled as 1,  2, 3, and 4. We denote this set by U = {1, 2, 3, 4}. If A = {2, 3}, B = {2, 4}, and C = {1, 4}, then A, B,  and C are  subsets  of U, this is denoted by A    U,    U, and C   U.    We denote the fact that 2 is an element of A by  2 A.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The  union  of A and B, denoted by A B, is the set  of all points which are in either A or B or both:  A B =  The  intersection  of A and B, denoted by A B, is  the set of points which are common to both A and
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/30/2008 for the course MATH 1780 taught by Professor Snyder during the Fall '08 term at North Texas.

### Page1 / 9

MATH 1780 Lecture Notes Chapter 2 Section 2 - MATH 1780...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online