5500SOL2

# 5500SOL2 - ORIE 3500/5500 Fall Term 2008 Assignment...

This preview shows pages 1–2. Sign up to view the full content.

ORIE 3500/5500 Fall Term 2008 Assignment 2-Solution 1. Let A 1 ,A 2 and A 3 be the events that ﬁrst, second and third friend hit the deer respectively. They are independent and P ( A 1 ) = 0 . 3 ,P ( A 2 ) = 0 . 4 ,P ( A 3 ) = 0 . 5 . (a) P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ) P ( A 3 ) = 0 . 3 × 0 . 4 × 0 . 5 = 0 . 06 . (b) The required probability is P ( A 1 A 2 A c 3 ) + P ( A 1 A c 2 A 3 ) + P ( A c 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ) P ( A c 3 ) + P ( A 1 ) P ( A c 2 ) P ( A 3 ) + P ( A c 1 ) P ( A 2 ) P ( A 3 ) = 0 . 3 × 0 . 4 × (1 - 0 . 5) + 0 . 3 × (1 - 0 . 4) × 0 . 5 + (1 - 0 . 3) × 0 . 4 × 0 . 5 = 0 . 06 + 0 . 09 + 0 . 14 = 0 . 29 (c) Let F be the event that exactly one bullet hit the deer. Then F = ( A 1 A c 2 A c 3 ) ( A c 1 A 2 A c 3 ) ( A c 1 A c 2 A 3 ) and P ( F ) = P ( A 1 A c 2 A c 3 ) + P ( A c 1 A 2 A c 3 ) + P ( A c 1 A c 2 A 3 ) = P ( A 1 ) P ( A c 2 ) P ( A c 3 ) + P ( A c 1 ) P ( A 2 ) P ( A

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/05/2008 for the course ORIE 5500 taught by Professor Todd during the Fall '08 term at Cornell.

### Page1 / 3

5500SOL2 - ORIE 3500/5500 Fall Term 2008 Assignment...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online