midterm1.s2

# midterm1.s2 - 21A CALCULUS Monica. Vazirani Oct 22, 2007...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 21A CALCULUS Monica. Vazirani Oct 22, 2007 Midterm 1 Name: :QCsleﬁ QD§ V2- ID: Section: 1. (30 points) Determine whether the following limits exist, and if so, evaluate them: ’_ W I / 2" u \ L a?“ ‘ ' /’>‘ ’l "2 +\ ‘ Q * --.7X+l a 11111 Wang—2H1 «- \xm w’k \Y A “i 1. \W t. ‘ :U—wo .l ** "x" ( INK . i ‘ 1 7.1: +51 21 xAQD 48> 7XA'SX 2X\ xﬁqﬁp Y25( 7X3+<K_2x5 \m — * lg/"Il M + X"M rl"§/>\’ 1K1 7O 0 . 3m4—10x+4 ,. O‘O'N — - b. limwaom ‘ OV‘O .\ ” @rflﬂﬁ— -_ \m (is/22m .2“; sin LIE—71' \/ ‘ I . d. 11111$_.7r111(e( ELM”) : Sy‘vq {Q S\ ' [/3 Name: ID: Section: 2 2. (20 points) Consider the function g($) = :28. a. (10 pt) Find (show your work) and list ALL asyinptotes to the graph of y = 22:28, indicating whether they are vertical, horizontal, oblique. ) \v“v\ C239?) 1: ()0 \V“ of") Z / do he \r\0< m, axing. C,:3\&»\ KAU'Xﬁg \kf’) 0c XA ‘Cp \\"V\ ‘ (2Q : w \in (30K) 3 —- {>0 J‘VI(‘ 0J2) Ck, 3 (53, X ‘4 kc; X4 “94+ ) x >~ ‘ a’ 21:1 : 7k“)— \5 (\n <_;\/3\L\\\r( Q 5'“ M \ "\ﬁ A—Q ‘ x4 ﬁ'ﬁmx * 8 3:5 Q 13 «if -...., _. “1* a % ’1ﬁ ' “"‘“"""’w n. b. (10 pt) On the graph below, sketch the function, also drawing the asymptotes. xﬁ Name: ID: Section: 3 3. (12 points) Fill in the following SIX blanks in the following problem, which involves using the precise deﬁnition of limit. Verify that 12 walim I = 5, for 6 =1. (1) We are given 6 = 1. Set 6 = 4. [Which we know to do because we’ve already done our scratch work beforehand] Then we verify, whenever 0<lX‘9~L(|<6 (2) then 120 l7 — 5i < (3) .1, Suppose —4 < 17 — 24 < 4. Then 20 < < 28. Taking reciprocals and scaling 120 30 . 5 > > 7, so, subtracting 5 12 —’ O > —0 - 5 > —0. I 7 But since 1 > 0 and "T5 > —1 this implies l >1—20—5> ~I , (4) CD which exactly means that N ame: ID: Section: 4 4. (08 points) If (3 — \$2) S S 3cosa: for all —§ < x < %, ﬁnd limmho f(17). 'L \\N\ y£"x:% \«AQ .\ ’Eie'x; \ / N ﬁr VC ‘ 5 g kg m BC,’\CL r4\ W M “‘s. XAO 5. (5 points) Determine the points at which the given function f = x/ 14 — 2:3 is continuous. Q‘K X\ V1) gym-4 \q \_) ova (1‘; AL ms 0y wu‘w “K .. 1x 7/ O \7 > x to . 05‘? (a QC] 7 1 6. (10 points) Show the equation 40 = c + 6 has a, solution c in the interval [0, 2]. \28‘ OGCX\:‘(X~X-Cc. Km \3 WANG.“ (WK 06m: ‘7’0/0-«(91 \"CD 3 —5 <0 (MIN:- ql—Dr Kc : 3% “> O ‘3 mg \VT 3mm is 8‘0"“ O<C<3~ “A” %(Q\;©' Name: ID: Section: 5 7. (15 points) Find the equation of the tangent line to y = Va; — 2 at w = 6. Show your work. La COP” wL A 96.6 m Aw. \‘m v, (6,, 0(6)}: {CU/LL) , / \Me &\uC\-€ 6% AW <2 \Hve is Q (6\ \W Q‘Cﬁ-‘Q \ -’ g r \ /“" 2 \m M" “‘0 \‘ \r’o \" .. r- _ v” w ~ 1 m +2 . M ~ M \x “‘ / \A-ﬁo , \ 412i T. \m .1 ‘/L/ I; :16 MW“) w «s W + ;L ...
View Full Document

## This note was uploaded on 10/07/2008 for the course MATH 21A taught by Professor Osserman during the Spring '07 term at UC Davis.

### Page1 / 5

midterm1.s2 - 21A CALCULUS Monica. Vazirani Oct 22, 2007...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online