This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Version 059 – Homework 3 – Radin – (58415) 1 This printout should have 23 questions. Multiplechoice questions may continue on the next column or page – find all choices before answering. 001 10.0 points The graph of f is shown in the figure 2 4 6 8 2 4 6 If F is an antiderivative of f and integraldisplay 8 1 f ( x ) dx = 31 2 , find the value of F (8) F (0). 1. F (8) F (0) = 33 2 2. F (8) F (0) = 17 3. F (8) F (0) = 16 4. F (8) F (0) = 35 2 5. F (8) F (0) = 18 002 10.0 points Calculate the indefinite integral I = integraldisplay (4 √ x )(2 + √ x ) dx . 1. I = 8 x + 4 3 x √ x + 1 2 x 2 + C 2. I = 4 x + 4 3 x √ x + 1 2 x 2 + C 3. I = 4 x 4 3 x √ x 1 2 x 2 + C 4. I = 4 x 2 √ x 1 2 x 2 + C 5. I = 8 x 2 √ x 1 2 x 2 + C 6. I = 8 x + 4 3 x √ x 1 2 x 2 + C 003 10.0 points Evaluate the definite integral I = integraldisplay π 4 3 sin 2 x 2 cos 2 x cos x dx . 1. I = 6 2 √ 2 2. I = 6 + √ 3 3. I = 6 4 √ 2 4. I = 3 √ 2 5. I = 6 + √ 2 6. I = 6 √ 3 004 10.0 points Evaluate the integral I = integraldisplay 3 d dx (2 + 3 x 2 ) 1 / 2 dx. 1. I = √ 2 2. I = √ 2 √ 29 3. I = √ 29 + √ 2 4. I = √ 29 Version 059 – Homework 3 – Radin – (58415) 2 5. I = √ 29 √ 2 005 10.0 points Determine the indefinite integral I = integraldisplay 5 2 cos 2 θ cos 2 θ dθ ....
View
Full Document
 Spring '08
 RAdin
 Derivative, Fundamental Theorem Of Calculus, Royal Flying Corps squadrons

Click to edit the document details