This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: sl7433 – Homework 6 – Radin – (58415) 1 This printout should have 17 questions. Multiplechoice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 4 1 ln t 7 √ t dt . 1. I = 1 7 (ln4 1) 2. I = 4 7 (ln4 + 1) 3. I = 8 7 (ln2 + 1) 4. I = 1 7 (ln2 + 1) 5. I = 4 7 (ln4 1) 6. I = 8 7 (ln2 1) 002 10.0 points Determine the integral I = integraldisplay 4 x (ln x ) 2 dx . 1. I = 2 x 2 parenleftBig (ln x ) 2 ln x + 1 2 parenrightBig + C 2. I = 4 x 2 parenleftBig (ln x ) 2 + ln x 1 2 parenrightBig + C 3. I = 2 x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 4. I = 2 x 2 parenleftBig (ln x ) 2 ln x 1 2 parenrightBig + C 5. I = 4 x 2 parenleftBig (ln x ) 2 ln x + 1 2 parenrightBig + C 6. I = 4 x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 003 10.0 points Determine the integral I = integraldisplay ( x 2 + 4) cos2 x dx . 1. I = 1 2 parenleftBig 2 x cos 2 x (2 x 2 +7) sin 2 x parenrightBig + C 2. I = 1 2 x 2 sin2 x x cos 2 x + 9 2 sin 2 x + C 3. I = x 2 cos 2 x + x sin 2 x 9 2 cos 2 x + C 4. I = 1 4 parenleftBig 2 x sin 2 x (2 x 2 +7) cos 2 x parenrightBig + C 5. I = 1 2 parenleftBig 2 x cos 2 x +(2 x 2 +7) sin 2 x parenrightBig + C 6. I = 1 4 parenleftBig 2 x cos 2 x +(2...
View
Full
Document
This note was uploaded on 03/18/2008 for the course M 408L taught by Professor Radin during the Spring '08 term at University of Texas.
 Spring '08
 RAdin

Click to edit the document details