Integral Calculus Exam 2

Integral Calculus Exam 2 - Panjwani, Sameer Exam 2 Due: Oct...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Panjwani, Sameer Exam 2 Due: Oct 31 2007, 1:00 am Inst: James Rath 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Evaluate the definite integral I = Z 3 3 x- 7 x 2- 3 x- 4 dx. 1. I =- 3 ln 5 2. I = 3 ln 5 3. I =- ln 5 4. I = ln 5 5. I = ln 4 correct 6. I =- ln 4 7. I = 3 ln 4 8. I =- 3 ln 4 Explanation: After factorization x 2- 3 x- 4 = ( x + 1)( x- 4) . But then by partial fractions, 3 x- 7 x 2- 3 x- 4 = 2 x + 1 + 1 x- 4 . Now Z 3 2 x + 1 dx = h 2 ln | ( x + 1) | i 3 = 2 ln 4 , while Z 3 1 x- 4 dx = h ln | ( x- 4) | i 3 =- ln 4 . Consequently, I = ln 4 . keywords: definite integral, rational function, partial fractions, natural log 002 (part 1 of 1) 10 points Evaluate the definite integral I = Z e 1 3 x 2 ln xdx. 1. I = (2 e 3- 1) 2. I = (2 e 3 + 1) 3. I = 1 3 (2 e 3 + 1) correct 4. I = 1 3 (2 e 3- 1) 5. I = 2 3 e 3 Explanation: After integration by parts, I = h x 3 ln x i e 1- Z e 1 x 2 dx = e 3- Z e 1 x 2 dx, since ln e = 1 and ln 1 = 0. But Z e 1 x 2 dx = 1 3 ( e 3- 1) . Consequently, I = e 3- 1 3 ( e 3- 1) = 1 3 (2 e 3 + 1) . keywords: integration by parts, log function 003 (part 1 of 1) 10 points Panjwani, Sameer Exam 2 Due: Oct 31 2007, 1:00 am Inst: James Rath 2 Evaluate the integral I = Z / 4 (1- 4 sin 2 ) d . 1. I = 1 4 - 1 2. I = 1 2 - 1 2 3. I =- 1 2 4. I =- 5. I = 1- 1 4 correct 6. I = Explanation: Since sin 2 = 1 2 1- cos 2 , the integral can be rewritten as I = Z / 4 n 2 cos 2 - 1 o d = h sin 2 - i / 4 . Consequently I = 1- 1 4 . keywords: definite integral, trig function, double angle formula 004 (part 1 of 1) 10 points Evaluate the definite integral I = Z 1 t (2- t ) 2 dt. 1. I = 2(2- ln 3) 2. I = 1 + ln 2 3. I = 2- ln 3 4. I = 2(1 + ln 2) 5. I = 1- ln 2 correct 6. I = 2(1- ln 2) Explanation: Set u = 2- t . Then du =- dt , while t = 0 = u = 2 , t = 1 = u = 1 . Then I =- Z 1 2 (2- u ) u 2 du = Z 2 1 (2- u ) u 2 du = Z 2 1 n 2 u 2- 1 u o du =- h 2 u + ln | u | i 2 1 ....
View Full Document

Page1 / 8

Integral Calculus Exam 2 - Panjwani, Sameer Exam 2 Due: Oct...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online