{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MTH203 SP05(Exam 3) - American University of Sharjall...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: American University of Sharjall Department of Computer Science, Mathematics, and Statistics MTH 203 - EXAM III Spring 2005 Name: ID# Section# Instructor Name Q1. (14%) Set up triple integral in cylindrical coordinates to evaluate the integral I” ex2+zde, where Q is the region bounded by x2 +7.2 = 4, y E 0 and y = z. (Do not evaluate the il3tegral) ' (9 9/7le (2, ZMSL @ Ming 0W“ 0L/ 2 O 0 ‘ QZ.(14%) Set up triple integral in rectangular coordinates to find the volume of the region in the first octant bounded above by the cylinder z = 1 —y2 and lying between the vertical planes x + y = 1 and x + y = 3 (Do Not Evaluate the integral) 03.(14%) Set up triple integral in spherical coordinates to find the volume of the solid bounded below by the sphere x2+y2+22= 22 and above by the cone z = 1/3x2+3y2 .(Do not evaluate the integral) 94‘ 2 it b V j @ WW,MM\X/~\ fi/ 0 ”2/ ,9” x V” W 7 r 04. (22%)Find the work» done by the force field F(x, y, z) = (y + z)i + (x + 2)] + (x + y)k on a particle that moves along the line segment from (1,0,0) to (3,4,2) in two ways: all alByusingmeparametuzafimMesegmemto evaluate the work integral {\ b) By evaluating a potential function for F , x:1+2+ éC: \9,¢f£/ O$+<( 5 5 i” Z 57/ W5: de: $Ct®fl+(x+g)49+(xW\Ag ”fé’flql‘hdt + Zl+i+t%)w + (Haw 9924+ ,- a} jfiwme): wwfleemh/qm/ 'b> fisz? «Big—“XML” @kgz? z 7083’ r a”? W :37WC3 "\ :wtjlg1fizm?x+g?+k/y 7, 195% HAW?) Ea Magi 70 % h/yzc Fine/mfl M » X—g}(4—M?+ C ’1" ST: MU NW’S'fl/flr) GED/Lazy 05.02%) For the vector field 2 sin(2x) F(x,y) = (4cos(2x)ln(y)+6x 3I+1 i+( y +9x2y2)j: ‘ f a) Prove that F is path independent A/ b) Find a potential function for F c) Evaluate the line integral L F. d 7where C is the line .1 i . segment from (6 ,1) to ( 4 ,2e) L __,' B” N gavel/x 5 Mafia fig” ’ 752 z W fiwwl WWW 3 , . fl [:4 eréX‘fl-P/ 9 . w w b) max ‘5. @6333; 2241,9149 .+ 5 law +51% 93 1 2 MW ca 1/”) a» (37) QB. (14%) Use Green’s theorem to evaluate f0 (2xy + Data: + (y +x)dy, where C' Is the polygonal path (0, 0) to (3, 0) to (2,1) to (1,1) to (0,0). Sit/fl 2131111 ...
View Full Document

{[ snackBarMessage ]}