AppendixB - APPENDIX B FIXED-END FORCES AND DEFLECTIONS...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: APPENDIX B FIXED-END FORCES AND DEFLECTIONS Beam Loading Moments, Shears and Deflections 2 2 (a) Ma y L w A C B Mb M a = - Mb = wL wL ; Mc = 12 24 x Va 0.211L 0.211L Vb wL2/8 V a = V b = wL 2 2 wx 2 y = (2Lx - L - x 2 ); 24EI yc = - wL 384 EI 4 (b) y Ma A L/2 C P L/2 Mb B Va L/4 PL/4 Vb x M a = - M b = PL ; M c = PL 8 8 P V a= Vb = 2 P (A to C ) y = - (3Lx 2 - 4x 3 ) 48EI 3 PL yc =- 192EI 2 2 M a = Pab ; M b = - Pa 2b ; M c = 2Pa 3b 2 L L L 2 2 Pb Pa Va= (3a + b ); V b = (3b + a) 3 3 L L 2 Pb x 2 A to C :y = 3 (3ax + bx - 3aL ) 6EIL 2 2 (c) y Ma A a P C b Mb B x Vb Va Pab/L C to B :y = (d) y Ma A C Pa2 (L - x ) 6EIL 3 2 [(3b + a)(L - x ) - 3bL )] L w B Mb x Vb Va 0.237 L 0.192L wL wL Ma= ; Mb = - 30 20 2 M c = 0.0214wL at x = 0.548 L 3wL 7wL Va= ; Vb = 20 20 wL x5 y = (3x 3 - 2Lx 2 - 2 ) 120EI L 2 2 Appendix B - Fixed-end forces and deflection B1 (e) y Ma Va A Ma= Mo a C B Mo L 2 (3a 2 + L - 4La );M b = 6M o 3 2 Mo L 2 (3a 2 - 2La ) Mb b x Vb V a= -Vb = (a 2 - La ) Mo L 1 A to C :y = 6EI (3M a x 2 + V a x 3 ) 2 2 1 (M a + M o )(3x - 6Lx + 3L ) C to B :y = - 6EI 2 3 + V a (3xL - x 3 - 2L ) (f) Ma y h A L Tt Tb B Mb M a = - Mb = V a = V b = 0; EI (T b - T t ) h y =0 Fa Va Ma Fb Vb Mb = Coefficient of thermal expansion T = Temperature change Axial forces due to uniform change T : F a = F b = - AE T 2 2 (g) A C L w B Mb x Vb Va L/4 M b = - wL ; M c = 9wL at x = 3 L 8 8 128 3wL 5wL Va= ; Vb = 8 8 w 3 - 2x 4 - L 3 x ) y = (3Lx 48EI wL2/8 P (h) A L/2 L/2 Mb C B x Va PL/4 V 3L/11 b M b = - 3PL ; M c = 5PL 16 32 5P 11P Va= ; Vb = 16 16 P 2 A to C :y = 96EI (5x 3 - 3L x ) 3 2 C to B :y = P [5x 3 - 16(x - L ) - 3L x )] 96EI 2 Appendix B - Fixed-end forces and deflection B2 (i) y A a P C b Mb B x Vb Va Pab/L Pab Pab 2 Mb = - 2 (L + a); Mc = (2L + a) 2L 2L3 Pb 2 Pa Va = 3 (3L - b); Vb = 3 (3L2 - a 2 ) 2L 2L 1 V (x 3 - 3xL2 ) + 3Pxb2 A to C : y = 3 a 6EIL 3 2 1 Va (x - 3xL ) C to B : y = 6EIL3 + P 3xb2 - (x - a)3 [ [ L (j) A C B w Mb x Va 0.225L V b (k) y A C Mo B Mb x Vb Va a b Mo M b = - wL 15 2 M c = 0.0298wL at x = 0.4474 L V a = wL ; V b = 2wL 10 5 w 3 x5 y = (2Lx 3 - L x - ) 120EI L Mo a2 Mb = - (1 - 3 2 ) 2 L 3M o 2 V a= -Vb = - (L - a 2 ) 3 2L M o (L - a) 3x x3 A to C :y = - 3 ) - 4x (L + a) ( 4EI L L 3 x 1 2 2 3x M o 4 (L - a )( L - 3 ) - Lx L C to B :y = EI 1 2 + (x + a 2 ) 2 3EI (T b - T t ) 2 (l) Fa y L Tt Mb B h A Va Tb Fb Vb Mb 2h 3 EI (T b - T t ) V a= -Vb =- 2hL (T b - T t ) x 3 y =- ( + Lx - 2x 2 ) 4h L = Coefficient of thermal expansion T = Temperature change Axial forces due to uniform change T : F a = F b = - AE T Mb = - Appendix B - Fixed-end forces and deflection B3 ...
View Full Document

This note was uploaded on 10/21/2008 for the course BCEE 343 taught by Professor Dr.ha during the Winter '08 term at Concordia Canada.

Ask a homework question - tutors are online