homework 9

# homework 9 - PM?“ Thecamilevcr bumshouminﬁgﬁﬂhas

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PM?“ Thecamilevcr bumshouminﬁgﬁﬂhas adownwarddjstﬁbmgdloadthatvariesﬁnurlyﬁromw,” x-Otowzatx-Ljheeqﬁationofdﬁsbum'sdcﬂecﬁm mi: ' vm-53:2[-&>’-s&)'+w<-zr-so (9'1 (aJDewrnﬁnecxpreaﬁouﬁnrw.andw3;md(b)demmim cxpreuiomfatheremimmndﬁl‘. («j ﬂerrmbar 24x w; “Jazz , fry/"‘71.: J = 19 (x) r ,- x ,t I, z ' - V“! m = M [4%] {(2) m/f») —w/-:-) ] ‘7' /Z0 aw gait—{(522%) i w/gx') ‘- mm] m; = EN" = 54—1 z['ZO/Z&J"GO/Z&)z*/w/£' )”°”] /&0 W) = Ely” = j‘jf f”“‘£fw”= We — 2’!) w] M=—f{g):u/‘) {’6’} ﬂan/IBM)“ re; ﬁns/Mt, A; .- 17(0) = fZ-Vm (=0 : Mag/1450]“: El?” _ = mfg/312 x-o 6 ug-yn’th 2w; [-60 $2.5) 5/20 {-5} I W] Prat-.136. The cantilever beamAB in Fig. P736 supports a triangle distributed load of maximum intensity m. (3) Determine an expression for the deﬂection ma, 1:0), for Lhisbemand (b)detelmineexpressions formeslope, 0., and the deﬂection. a". at and B. 501?: by integrating the second-order diﬁ'erenﬁal equation for deﬂection. 03W "'1 W” 4%” E: : beam sad-.10 .0:- x t L —w.[L- ‘ 3| X H n L .(L-xii] Wimﬁ can/1w m. X) -x} f 2 EIT”: *WeEl.“XJ§ Mm -—x + wntL—XV' FHA law—int: +0.. V00 5 wa + Co: + Ca WW .4 ' “(OFF—ff?” O = [253+ CZ ][ + 8 Cl: 74; O = 13%? 1' C| C2: #6 Wx\=“—*I2%El§:: -(L—L"5-5&‘Z + I] rum-mu. Apemnmdingatend Coradiuingbom exerts a domd'l'eree P. as shown, in Fig. P1342. (:1) Determine expressions for the deﬂection curve ultx) in seg- ment AB and the deﬂectidn m 03(x) in the section BC. Solve by integrating the second-order differential equation: for deﬂection. (b) Determine the deﬂectinnlac where the aim is standing. and (e) determine the maximum (upward) deﬂection. a... - max 19.0)]. in segment AB. Egg: board mam oexe L I A A Mod X ET“? If f ‘ ZWX 1%sz = 0: M. m= - 2m '-—-—x~—»l \an EIVI. = 'H Em: board 5585mm Le x e 51. X abx w +J(2M)x=0; M‘zbd = '" WfBL—ﬂ EIV” WX‘SWL MM -—-x 1 2 C1 ‘3 EIQ’EW—fa‘gmgc +D. um EIVWEJ-—zl+nx+bz ' ‘ :mohwnﬂamko ‘ ' ' ' - mm: wave 2 XML— O=EQWL5 Ci: 3 o=_ 3 3+C4L =3, C1“0 2 0“ ms + BLED; I D.=_WL5 -WL2+CI'= ig—+D. D2=T (ConiHJ 1.54 nztan-JJ W<x1=%%i§[’{ M[ (1 won = tag: L W b) 4+ La \ngL)” Lug: [mt—am + luvs) - 5] - E1 5 .5: MEL“: 33%? 3&2 WLS —-'| l Vi'fXJ‘EEE—L['3@Z+I 1: “(7L)” +75] Xﬁ’ﬁ = ﬁx]; 23 ms <55..=v:(x,3 = max M7346» AWlGXﬁDwide-ﬂangcstealcanﬁlembm AB carries a uniformly disuibmed load of we - 2.7 Idpsm unaspanofL-Sﬁ(seeFig.P13-26).E#3OX10’ ksL(a)DctermineIhemxim1md:ﬂeai0n.5_.and (b) determine the maximum ﬂexm'al stress in the beam. (See Table D1 oprpendifoorthe unss-seﬂionalproperﬁcs ofthebeam.) a) . i I I, mm) o A E,_._x Rom-Fable, DJ, 'I ‘58 in4 6M1 d= rum in. P—"ﬁ 1— —“—-—’4 Tabl LI 'La 1 ¥ro_m Wolf" _ (IE—IPHGFfS/S )(‘IFL/pginjmla‘mf _ (Em: 8E1 ' ‘8 one 1 51'8m “MM BMW beam ElectionJ 0 ex éL. -W.?(2 a; It“: "9(2ML'0:M051' M2} ()0 M / H—L—>k~?$.ﬂ—al 5m”: W; 2) 2. 2 2d W30 :_ 353i— _(2.‘1‘-kiEs/ﬂ’}{‘IL, in.}zUL.,o11nJ — 11%, 5:8 m“ =Mzzk51. Umax = No.02 ksi M1328. The simplympportedbeminﬁg. FIB-28 issnbjmdwadimibmedloadofinmnmyﬁx)= 1 ~w,(§);mbu;‘mmadamdowwu¢mmm ﬁnnxignintbeuprusionimpmJ (a}Usethefom1h- ammmwdomminethsuqmﬁmofthedeﬂuﬁon mu(x}:and(b)demminethemsﬁmnmdeﬂmﬁm,d_ .mh(x)],otthisbcan(c)netemﬁneexprusiomtor themaionsA,and-B,. Infix‘t Wm: A B X b“: 5"“ 2S 2 — L —ﬂ MM: 4300* 'W.(L) (I _ 02—1 {HEW ' WI? , -w.1c‘ V= (EEK) ' 61);: + C» —W. M= El'xr" Tel? + Cm. * C.L _“W-=C" CELL“ EIT" ﬂat-13+ 921* CEKK+ C; — " I‘aL 2 EIxr= ﬁ?‘ Ln a. “braved WM: Wch" \rm'o 3 M(o\= MCDSO w.L (3‘= CH. C s [2 0: 5% + L; + T+C5L c} C;"'O .5 «-w.L 0 C5 ‘ ﬁo 0= ‘2 +CIL Cq=0 m = 5%[‘ (“3" + 5%? 4%)] 2 &*ﬁ[-L(ﬂ5+ 15?“) 4] ‘ \r'ixJ" 3w 1:” - - o *Evawolvu, x: 0.5521l9153L wme gjﬁqﬁ ['(ﬂh 59513441)?” = "5.232%0‘5] OL‘I Gingham}! = ‘ 5.28001) ET (J reactions at A anal B. V: —Wax’+ ELL A,=V'{OJ* 3’51 Av m J B: T "5'1! :2 wgﬁ Bf-VUJ’ 7r Pub. 7“ The uniformly loaded beam in Fig. P144 is completely ﬁxed at end: A and B. [3) Use the second-order integmt'mn method to determine the reaetbns RA and M4 and to determine an expression [orthe deﬂection m 9(1). (b) Sketch the shear'diagmm. WI). and the moment dia- gram. Hts)- rnu, I'M-35, ml Ive-36 0.1me ﬁlm) .439 I. . l I : A/leu B . . I‘e-———‘— —‘—-——‘—‘—)f 2 I EBB: beam Scolc'ion, oﬁx’, e L ‘II H1er misﬁﬁo: MOO: M1: Rm“ 22321: 13" EIv'EMHR‘x'rﬂfs wé Hth Maw Hewmeﬁﬂem R, 2 2 Wm EIV' rmf+ﬂl¥+%§*alx*Cz WW: rte) ' Wm} = WJ " WM 7 0 “C22 C110 C Prob. 14-12. Solve Prob. 7.4-1 using the fourth—order inte- gration method. 69 I- 5’V00 WW ANKLE/ALE B I‘— L——*-~—>4 MM: 4300: "Wu (EIWY‘ “w. V “ {EIHT ‘ "Wax + C. —w.x2 M: EIVJ: 7; +C1X2+Ca EIv’ = '“J‘ + 9%— +sz +C; —w.x.‘* (Inc; Q2? EL” 24 * la * 2. +C5X+Cn| : we}: NHL} ‘ T’IL} = Mfo‘r = o C1 iamL (:sz 2 + CSL. a; C2: 0 2 -V&L§ T 4 + C3 C5 ‘5 zig C4: 0 SWQL LBW Fromm, inward-[man and bomdan} Condﬂﬁons in problm seal-jam (a), W,% 1%): 59:95- [a] ...
View Full Document

## This homework help was uploaded on 04/06/2008 for the course AME 20241 taught by Professor Wagner during the Spring '08 term at Notre Dame.

### Page1 / 8

homework 9 - PM?“ Thecamilevcr bumshouminﬁgﬁﬂhas

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online