hwk6_solns

# hwk6_solns - ECE 300 Signals and Systems Homework 6 Due...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 300 Signals and Systems Homework 6 Due Date: Tuesday October 16, 2007 at the beginning of class Exam 2I Thursday October 18I 2007 Problems: 1. Assume x(t) has the spectrum shown below (the phase is shown in radians) and a fundamental frequency a)” = 2 rad/ sec: 4 «P ,1 I r : F : : I‘ I I l I I l l ‘ r I l I ' , , I 1 § i : : : I I a) E a E s I ‘ i I 1L . , A , 7 7 r . . c 7 7 7 7 7 . s 7 7 7 r . , e , 7 7 7 , . 7 A 7 77\$, A A 7 7 7 s _ 7 r , s . A . e 7 c , A 7 7 7 _ e 7 7 , . . .7 I l I o.- i , {1 -4 3 2 1 0 1 2 3 4 Harmonic 3 e . a , _ , A , , . , , , -o T, . , , , a a . , , . . , , , e A , , ,T o , _ , , , , w I 1 z . : l . I 2 v ~ ~ — — 4:4 a — I — — ~14) — — — A ~ ——' — - — — — ——'— ~ — — — — ‘i — — — — v ——' — ~ — — — — — — ~ — — “4; 3 f I I : : : : c 1 _ _ . K _ _‘L _ _ _ _ _ _ e _ _ _ _ _ -J . _ _ . . __I_ _ . _ _ _ _.L _ _ _ _ A -_I _ _ _ . _ __I . . _ _ ___., g I I : : : i v 0 »—~— — — t I I _:;-, 3 I I : I l f : m _1‘ ,, A _ , J, s,, l , L7, ,4; ,, M3,, , 4,, 7 .C I l l l‘ : I n- I» ‘ f, | I I -' I '2? ““ ““““““““ “I “““ “f ““ “i ““ "ﬁr “““ “i """ "— -3L , ,,,,,,,, I ,,,,, I : ,,,,, M: : -4 -3 2 1 D 1 2 3 4 Harmonic Assume x(t) is the input to a system with the transfer function 6"“ 1 S [col < 3 H(a)) = 2e-1'2‘” 3 < [0| < 5 0 else Determine an expression for the steady state output y(t). Be as speciﬁc as possible, simplifying all values and using actual numbers wherever possible. Fall 2007 . 2. ZTM, Problem 3-16. 3. The output of a LTI system, y(t), has the following spectrum shown on the left, while the system transfer function, H (kwo), has the spectrum shown on the right. Assume all angles are multiples of 45 degrees. 2 ,,,,,,,, ,.- r~ .... .77 g ..... ,7 3 ,,,,,,, .7 7 7 . . , . , . . . , w , , . 7 , . 7 , , 7 . . , , r 7 . , , ,, L I s ‘ I l’ I I I I (F I I I 1‘5‘__.l . _ _ _ -_l_‘_l___l____i___l_»_< I I I I I g 3 I I I I I I §2—~—4_7-c . _ . 7 . _ _ ——4)..._—L——-l———_( g 1 '-_l__~fA__—€I)A~‘>__Fd>‘v_+_~-l___g _, I l I I E I I g I I I I I I I 1 7 _ _ 7 7 7;. _ _ 7 _ _ t _ 7 _ _ _ _ 7 7 7 I 7 _ 7 7 (0.5 *"t‘"’l*”’”“ ’t — i r l‘ T J T I I I l , _7 ..... .. l , , , . . , , , 7 7 , 7- l ,,,, ,, I I. 7 ..... ,. , , . , , . 7 , , , , . , . 7 l ,,,,,,,,, 7 r 9% 3 -2 -1 o 1 2 ‘3 £4 o -2 1 o 1 2 a A“ Harmonic Harmonic ‘00 7 ,,,,, 77...- , 77 m ,,,,,, 7 200 ,,,,, ., , I 7,. , , , , , . , , , . . r . , ,, I I I I I I I I I ‘I' I I " I I i I I I " I I I ; I I I 977,7 1 7,. I .77... 7...}: g 7,... 1m .1 7 . p ,7 7 4‘7 7 7 7 7 .I ,. t I7 7 7 I I I ‘ I I I I I I I v I I . I I I v I l I I I \$100 77.1777177755 7 7 7 7 77I7,,7L777I..,7_ 5 097 7,; .7. ' 7,7I l ,,,,,,,,, ., 4 ,,,,,, ,. I I I I I I I I I I I I a“ I I I I ; I I I 9' I ‘73 I I I I .200I7 ,,,, .7 I 4., I 7 ,,,, 7‘ 747., I ,,,, “L 100 I ,,,,,, 7 I 7..) It» ,,,,, ,.L I7. 7, 4 -3 >2 —1 0 1 2 3 4 4 3 -2 1 0 1 2 3 4 Hamil: Harmonic a) Determine (sketch) the spectrum (magnitude and phase) of the input to the system, x(t). . b) If x(t) has the fundamental period T = 2 seconds, determine an analytical expression for x(t) in terms of sine, cosines, and constants. 4. Assume two periodic signals have the Fourier series representations x(t) = ZXke’kwI' ya) = Znej’m’o‘ For the following system (input/output) relationships: 3) ya) = be — a) b) YO) = bicU - 0) anhiﬁnmﬂqn(wamzﬁ=%ﬁn4+XMJ) .. 2 . 1 d) y(t)+—gy(t)+—7y(t) = Km) a; a5 i) write Yk in terms of the X k ii) If possible, determine the system transfer function H ( jm) iii) A system must be both linear and time—invariant to have a transfer function. If you cannot determine the transfer function, indicate which system property is . not satisﬁed (L or Tl). Fall 2007 5. Assume x(t) has the Fourier series representation x(t) =2Xke’kw‘“ and fundamental period I; .The function y(t) is related to x(t) through the relationship y(t) = a) Determine the period of y(t) in terms of I; (the period Ofx(t)) and fundamental frequency for y(t) in terms ofwo (the fundamental frequency for x(t)) b) Set up the integral to determine the Fourier series coefﬁcients Yk in terms of the parameters determined in part a (the integral should be centered at 0), and determine how Yk is related toXk c) Starting from the relationship x(t) = ZXke/W and making a simple substitution, show how we can determine the results from part b. This problem demonstrates that compression or expansion of a signal does not change the Fourier series coefﬁcients, it only changes the fundamental frequency. Fall 2007 “OJ/Fee (200': 4. I ’1‘ l I I, l I I l I I 3 I I I I g I _‘ I I 1 I I' I 3;” +7 7+» ~ 7 I A .3» <1 ' I I I I ' I | I é g I l | I E I I» «I I g I : ‘ I i I ; I 1i ’ “’1 i i 03*; ! " -4 3 -2 1 0 1 2 3 4 Harmonic 3g ' ’ I ‘T" ‘r A" “ T" r ” "*7" i | I l | 2g~ ----- ————— —~: ----- ————— -% ————— —-: ————— ———— "AI A I’ I I I | | g 1 _ _ _ _ _ _ -I. _ _ _ _ _ _ A . _ _ _ . -4, . . . _ -_L _ _ _ _ --J. . . _ . ‘ -J , . _ _ _ _ -3 _ _ _ _ --_4 I2 I i I : : : i i E o;-——— ~42— -— ———— — ; ~ - ge— - «1'7 ‘ g —— g —. :4‘ m I I; l | I ‘ [ §_1;v z ,:,, _A_,‘y,r WW I I | l 1 .2I . . _ _ _ _‘, _ _ _ . --.I . . . _ . ___| . _ _ _ _ -_L . . _ _ __.L _ _ _ _ _ _.)_ _ . _ . --I . . . . -_ I I I i . I .3l_, 4,3”, - v _,1,, _L,,, VIV i hL. ,, VI -4 -3 2 1 0 1 2 3 4 Harmonic q w3(2e~3) I— I1 DOSOILLMOBJ gTéprc/WM W3 __ f if f max;- 7 * Xml-‘L’ A gauge {a 0 H2 «(~83 = Z We a3 ngath «565 ‘LS (Val Cit/mp Qgﬂm T71 Xh :1 #0 g 0H9 [40\$ (numb was»; {mam} J4: ﬁx TL "/2. ‘ x :J. «(ngﬁwona/Q’ ~I) L To ’ To ‘ Jq/‘fm do“) -73/ ‘10 W 00 z 2' parapet/(J5 CS 009- W T? g LOJUO-Funu’km 1” 0 “£9 {6 s0 3‘ _L, g qu> 1 To ‘To '5. )1. D \ \ h 2 1“; g 1 W15 wg(qhw”t>°a£ 1 X” (009% (I ~0d‘914> O ‘10 2. SW 405:) {Y QnJ—QV‘QW We ’gaw X“ {Y QKOQ 9% L) ass/aw «(c5 JVWJ qmj dopj :0 7mm ‘f/xﬂ RAW qrgmwwdg) n 21%) 7((5\g[h(nmbf\0€‘g X \ I: k In -1: J1 : :1 g ‘XlQS'm (‘hWa‘aaif‘rl 8 2.46605”) (UWUJAJQ: __><M ,_, L ‘ ﬂ. \$1716? 111:) “(I/Mi )(h q/M/ /Md /);4/ ﬁn/da/o/ 0) agar/w 7/23) 2' —4((le‘ MZ/JﬂM/ﬁwg ym’ﬁgé) _ To zXn e : “OMB-I: : , ix“ await" A» gnkbted‘n (onD/i _: edwéined‘nwo‘e‘ 4M4!" : 7‘ Exne e \W ~ 1- 35x14 e4“ °<29 “‘“ ” : imam” : w) ﬂkw’z/Q”); A3/ﬂ/L ﬁzﬁ'eﬂw 4m} 0‘? 00+ O4 .IIIIQIII!]4 jll.4 i4 _ _ _ _ _ . _ U‘ _ _ _ _ . _ _ \‘ . . _ _ _ _ _ _ . . v’ _ _ _ . VIII 1‘ 7|! ﬁl III libllr l I V I IILIII 1 ( ‘ ‘ l | | I l | | ll w L. .r gs @ . ,3 T . Aw 3 L. m, a _ _ _ d . _ _ . . _ _ _ _ _ . _ . . r _ _ . + :_.,:.T-,”._s:2 1--.“;rtfé H U n u H u u _ . . _ _ _ . 7;: 1 m 7:? I" 1 \$1 . _ . . _ _ _ ‘ . _ _ . _ _ . _ m . m _ _ w _ ‘w \Vllwt‘shluriu 0 m 1,4,11010 m iII:_rIItO_T;|iLO m raTqLixlquno m . — a A . . . _ _ _ _ _ _ _ _ . u w H _ u u u o 74:?!”[514 {AV “ 1 :Lw T1? a _ _ . . _ _ . / u u n n H “ H 0w \$-212vzvré 2 --;_::\$L2 « . _ _ _ _ . . H u u u u H n v _ _ _ . . _ . r--+-;;--»w--mv6 §§stzilllie TzilulTG 1|-l‘--1¢---|3 A, . _ _ . . _ n . . _ . _ _ 0 _ _ . _ _ _ _ T . _ . . _ _ . / 2 5 1 5 4 m m M4 3 2 1 4 m w 0 m4 {A 1- O 1 4| \\ 1 1 59: . _ D. 82_EE< \W. _ : IN 8: < w \$383 98\$ W, a» A8283 32; 0 kn \ NW. w (gig) :éV/ﬁwS/Kagt) -jAli/(xf ’. ' ﬂ [7» 7 If) e L 7‘0 GYM) » Emmi" X42: Wateﬁkleﬂ .— To a i/t) 2 ﬂ) g/Ja) :2775) 50 ﬂ; mW/Zfﬂg @0457? 317/ M anﬂ/ZMI; £5 22: v 51.0 ﬂ 1772 a A) “:4 *- 3: «jkwé 1/227 a MUEf 5735' Axwza/g- Z? . 77/ r 1. air/ﬁe “"5 “Ea/0'“ 578 ’23, Z 33’ 0’ . : L606)? (“ha/f: >61 7‘” :73 c} >17“ > F—' KKWQ'ZT '3 ’ :XK <24 (Wall: 9.? 3(th (i ,. {XKQO b a 2% 65434; ...
View Full Document

## This note was uploaded on 11/04/2008 for the course ECE 300 taught by Professor Throne during the Fall '07 term at Rose-Hulman.

### Page1 / 8

hwk6_solns - ECE 300 Signals and Systems Homework 6 Due...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online