notes.pdf - Notes on Discrete Mathematics James Aspnes...

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Notes on Discrete Mathematics James Aspnes 2017-08-29 13:34
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
i Copyright c 2004–2017 by James Aspnes. Distributed under a Creative Com- mons Attribution-ShareAlike 4.0 International license: . org/licenses/by-sa/4.0/ .
Image of page 2
Contents Table of contents ii List of figures xvi List of tables xvii List of algorithms xviii Preface xix Syllabus xx Resources xxiii Internet resources xxiv Lecture schedule xxv 1 Introduction 1 1.1 So why do I need to learn all this nasty mathematics? . . . . 1 1.2 But isn’t math hard? . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thinking about math with your heart . . . . . . . . . . . . . 3 1.4 What you should know about math . . . . . . . . . . . . . . . 3 1.4.1 Foundations and logic . . . . . . . . . . . . . . . . . . 4 1.4.2 Basic mathematics on the real numbers . . . . . . . . 4 1.4.3 Fundamental mathematical objects . . . . . . . . . . . 5 1.4.4 Modular arithmetic and polynomials . . . . . . . . . . 6 1.4.5 Linear algebra . . . . . . . . . . . . . . . . . . . . . . 6 1.4.6 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.7 Counting . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.8 Probability . . . . . . . . . . . . . . . . . . . . . . . . 7 ii
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CONTENTS iii 1.4.9 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Mathematical logic 9 2.1 The basic picture . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Axioms, models, and inference rules . . . . . . . . . . 9 2.1.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 What can go wrong . . . . . . . . . . . . . . . . . . . 10 2.1.4 The language of logic . . . . . . . . . . . . . . . . . . 11 2.1.5 Standard axiom systems and models . . . . . . . . . . 11 2.2 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Operations on propositions . . . . . . . . . . . . . . . 13 2.2.1.1 Precedence . . . . . . . . . . . . . . . . . . . 15 2.2.2 Truth tables . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Tautologies and logical equivalence . . . . . . . . . . . 17 2.2.3.1 Inverses, converses, and contrapositives . . . 19 2.2.3.2 Equivalences involving true and false . . . . 21 Example . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Variables and predicates . . . . . . . . . . . . . . . . . 25 2.3.2 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2.1 Universal quantifier . . . . . . . . . . . . . . 26 2.3.2.2 Existential quantifier . . . . . . . . . . . . . 26 2.3.2.3 Negation and quantifiers . . . . . . . . . . . 27 2.3.2.4 Restricting the scope of a quantifier . . . . . 27 2.3.2.5 Nested quantifiers . . . . . . . . . . . . . . . 28 2.3.2.6 Examples . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4.1 Uniqueness . . . . . . . . . . . . . . . . . . . 32 2.3.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.5.1 Examples . . . . . . . . . . . . . . . . . . . . 33 2.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Inference Rules . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 Proofs, implication, and natural deduction . . . . . . . 36 2.4.2.1 The Deduction Theorem . . . . . . . . . . . 37 2.5 Natural deduction . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 Inference rules for equality . . . . . . . . . . . . . . . 38 2.5.2 Inference rules for quantified statements . . . . . . . . 40 2.6 Proof techniques . . . . . . . . . . . . . . . . . . . . . . . . . 41
Image of page 4
CONTENTS iv 3 Set theory 46 3.1 Naive set theory . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Proving things about sets . . . . . . . . . . . . . . . . . . . . 49 3.4 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Cartesian products, relations, and functions . . . . . . . . . . 52 3.5.1 Examples of functions . . . . . . . . . . . . . . . . . . 54 3.5.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.3 Functions of more (or less) than one argument . . . . 55 3.5.4 Composition of functions . . . . . . . . . . . . . . . . 55 3.5.5 Functions with special properties . . . . . . . . . . . . 55 3.5.5.1 Surjections . . . . . . . . . . . . . . . . . . . 56 3.5.5.2 Injections . . . . . . . . . . . . . . . . . . . . 56 3.5.5.3 Bijections . . . . . . . . . . . . . . . . . . . . 56 3.5.5.4 Bijections and counting . . . . . . . . . . . . 56 3.6 Constructing the universe . . . . . . . . . . . . . . . . . . . . 57 3.7 Sizes and arithmetic . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.1 Infinite sets . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 61 3.7.3 Uncountable sets . . . . . . . . . . . . . . . . . . . . . 61 3.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 The real numbers 63 4.1 Field axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Axioms for addition . . . . . . . . . . . . . . . . . . . 64 4.1.2 Axioms for multiplication . . . . . . . . . . . . . . . . 65 4.1.3 Axioms relating multiplication and addition . . . . . . 67 4.1.4 Other algebras satisfying the field axioms . . . . . . . 68 4.2 Order axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Least upper bounds . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 What’s missing: algebraic closure . . . . . . . . . . . . . . . . 72 4.5 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Connection between the reals and other standard algebras . . 73 4.7 Extracting information from reals . . . . . . . . . . . . . . . . 74 5 Induction and recursion 76 5.1 Simple induction . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Alternative base cases . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Recursive definitions work . . . . . . . . . . . . . . . . . . . . 79 5.4 Other ways to think about induction . . . . . . . . . . . . . . 79
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CONTENTS v 5.5 Strong induction . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 Recursively-defined structures . . . . . . . . . . . . . . . . . . 82 5.6.1
Image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern