notes.pdf

# notes.pdf - Notes on Discrete Mathematics James Aspnes...

• Notes
• eeerik
• 404

This preview shows pages 1–7. Sign up to view the full content.

Notes on Discrete Mathematics James Aspnes 2017-08-29 13:34

This preview has intentionally blurred sections. Sign up to view the full version.

Contents Table of contents ii List of figures xvi List of tables xvii List of algorithms xviii Preface xix Syllabus xx Resources xxiii Internet resources xxiv Lecture schedule xxv 1 Introduction 1 1.1 So why do I need to learn all this nasty mathematics? . . . . 1 1.2 But isn’t math hard? . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thinking about math with your heart . . . . . . . . . . . . . 3 1.4 What you should know about math . . . . . . . . . . . . . . . 3 1.4.1 Foundations and logic . . . . . . . . . . . . . . . . . . 4 1.4.2 Basic mathematics on the real numbers . . . . . . . . 4 1.4.3 Fundamental mathematical objects . . . . . . . . . . . 5 1.4.4 Modular arithmetic and polynomials . . . . . . . . . . 6 1.4.5 Linear algebra . . . . . . . . . . . . . . . . . . . . . . 6 1.4.6 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.7 Counting . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.8 Probability . . . . . . . . . . . . . . . . . . . . . . . . 7 ii

This preview has intentionally blurred sections. Sign up to view the full version.

CONTENTS iii 1.4.9 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Mathematical logic 9 2.1 The basic picture . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Axioms, models, and inference rules . . . . . . . . . . 9 2.1.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 What can go wrong . . . . . . . . . . . . . . . . . . . 10 2.1.4 The language of logic . . . . . . . . . . . . . . . . . . 11 2.1.5 Standard axiom systems and models . . . . . . . . . . 11 2.2 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Operations on propositions . . . . . . . . . . . . . . . 13 2.2.1.1 Precedence . . . . . . . . . . . . . . . . . . . 15 2.2.2 Truth tables . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Tautologies and logical equivalence . . . . . . . . . . . 17 2.2.3.1 Inverses, converses, and contrapositives . . . 19 2.2.3.2 Equivalences involving true and false . . . . 21 Example . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Variables and predicates . . . . . . . . . . . . . . . . . 25 2.3.2 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2.1 Universal quantifier . . . . . . . . . . . . . . 26 2.3.2.2 Existential quantifier . . . . . . . . . . . . . 26 2.3.2.3 Negation and quantifiers . . . . . . . . . . . 27 2.3.2.4 Restricting the scope of a quantifier . . . . . 27 2.3.2.5 Nested quantifiers . . . . . . . . . . . . . . . 28 2.3.2.6 Examples . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4.1 Uniqueness . . . . . . . . . . . . . . . . . . . 32 2.3.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.5.1 Examples . . . . . . . . . . . . . . . . . . . . 33 2.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Inference Rules . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 Proofs, implication, and natural deduction . . . . . . . 36 2.4.2.1 The Deduction Theorem . . . . . . . . . . . 37 2.5 Natural deduction . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 Inference rules for equality . . . . . . . . . . . . . . . 38 2.5.2 Inference rules for quantified statements . . . . . . . . 40 2.6 Proof techniques . . . . . . . . . . . . . . . . . . . . . . . . . 41
CONTENTS iv 3 Set theory 46 3.1 Naive set theory . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Proving things about sets . . . . . . . . . . . . . . . . . . . . 49 3.4 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Cartesian products, relations, and functions . . . . . . . . . . 52 3.5.1 Examples of functions . . . . . . . . . . . . . . . . . . 54 3.5.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.3 Functions of more (or less) than one argument . . . . 55 3.5.4 Composition of functions . . . . . . . . . . . . . . . . 55 3.5.5 Functions with special properties . . . . . . . . . . . . 55 3.5.5.1 Surjections . . . . . . . . . . . . . . . . . . . 56 3.5.5.2 Injections . . . . . . . . . . . . . . . . . . . . 56 3.5.5.3 Bijections . . . . . . . . . . . . . . . . . . . . 56 3.5.5.4 Bijections and counting . . . . . . . . . . . . 56 3.6 Constructing the universe . . . . . . . . . . . . . . . . . . . . 57 3.7 Sizes and arithmetic . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.1 Infinite sets . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 61 3.7.3 Uncountable sets . . . . . . . . . . . . . . . . . . . . . 61 3.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 The real numbers 63 4.1 Field axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.1 Axioms for addition . . . . . . . . . . . . . . . . . . . 64 4.1.2 Axioms for multiplication . . . . . . . . . . . . . . . . 65 4.1.3 Axioms relating multiplication and addition . . . . . . 67 4.1.4 Other algebras satisfying the field axioms . . . . . . . 68 4.2 Order axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Least upper bounds . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 What’s missing: algebraic closure . . . . . . . . . . . . . . . . 72 4.5 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Connection between the reals and other standard algebras . . 73 4.7 Extracting information from reals . . . . . . . . . . . . . . . . 74 5 Induction and recursion 76 5.1 Simple induction . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Alternative base cases . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Recursive definitions work . . . . . . . . . . . . . . . . . . . . 79 5.4 Other ways to think about induction . . . . . . . . . . . . . . 79

This preview has intentionally blurred sections. Sign up to view the full version.

CONTENTS v 5.5 Strong induction . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 Recursively-defined structures . . . . . . . . . . . . . . . . . . 82 5.6.1
This is the end of the preview. Sign up to access the rest of the document.
• Winter '17

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern