This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: \ 4.4 Graphs of the Sine and Cosine Functions A. Basic Graphs of Sine and Cosine Def. A function f (x) is said to be periodic if there is a positive number p, such that f(x+p) = f(x) In other words, the function will repeat itself over an interval of length p. i
\ Sine is Periodic: sin(x + 21:) = sinx mnx=0 Soc %=O,Tr,?:u,.... 1
:7 '+ = rm J:or omj ‘mecger m ‘ ﬁned 2 2'“ _
Odd govChm '. and (Jc) = 3W? i
_ _ ”W =
ﬁa‘ Ex SW1 (2 — \ 3‘0 i —
— (3m ’“’/23 = y 3=+ermanx \ntm um‘r
F“ ’93 owe as \ooedmo/ i. POIQB ‘ ,
P Cx, x33 =i<cos<zﬂ sxnebx
CM $733=Q<©30ﬁpﬁ1> Q(‘><,77 =(Coe’if5‘m 33
amcc (£33: >0
‘m CH Cosine is Periodic: cos(x + 21:) = cos x. one ”Pedoda \ C05a1=0 %\’+=’E\3g)533"’ 2, Z. 2.
:7 3:: CZn+\)'%
‘ Zh'“ + (E
2. 2.
" “TY 1 :1
2.
S‘or at»? h
’Domin ~. 000,003
Ra ' [—\,\']
’Pexi 1 2m
Even Rimhcn 2 mac+3 =
CO3?
For Home: cosC—m = —\ = coshr) ll. Amplitude and Period: y = a sin bx and y = a co la] is called the amplitude. The amplitude changes the range of the graph to
[a, a]. If a > 0 and a whole number, we stretch the graph vertically.
If 0 < a < 1, we shrink the graph vertically. If a < 0, reﬂect the graph over the X—axis. b affects the period of the graph by compressing it or stretching it
horizontally so that they complete onecycle over any interval of length 27”. If b > 0, then y = sin bx and y = cos bx have a period of 31,2 If b < 0, then use the properties of even/odd. CHANGING THE AMPLITUDE AND PERlOD
OF THE SINE AND COSINE FUNCTIONS The functions y * 4: sin In and y  (1 ans bit (I) '2' 0} have amplitude in? and
27.?
period T If a I?» 0. the graphs ofy * a sun In and; ,, (1 cos bx are snmlar to the
J
graphs of y = sin .t and r: em .\‘. respectively. with three changes. I. The range is {th. til. 21: 7.
2. One cycle is completed over the interval 0. I i.
V , J
: 27 77 3:. 2n"
' 3. The .t ‘ s u‘ ﬁnale». 1‘ W the kc ‘ tints are (l. —. . —. and —. The \'value< in
m ‘ ‘ 5 p‘ 2b h 21, h ‘ each of these numbers is one of: —a. (i. or a. M: )' 11': a sin bx (a 23* 0) “t “i ncus in (u 23> 0)
if a ‘71 O. the graphs are the reﬂections of the graph of y —., in lsin in and
, v ‘= la {cos bx. respectively. about the taxis.
If h ~< {3. ﬁrst use even~odd properties then graph the function. See page 3 l9. \ Ex 4 Graph y  3 cos 1x over a one period interval
. . — — ' . ‘ p _ Zr“, —
\a\=3 Pm git3,51 b=‘/2. Penod. 2‘1 ’ ‘T‘ 'LW 5W*Ch\n% \Ie com! 3 own: ‘3 'Z
I566 RDWV‘TJ: O) "E. ) r‘l ,QlT 3 21 are‘Ch‘ng homEOPﬁOQLk
2);) b 2b b O _\
= o :L 1 .33. 21: 005T "_
3 2a; ‘/7_ ’3/2) V; C0523 ‘0
— (:03 3: = ‘\
‘0) «)23’W3‘23W)U‘ﬁ‘ b
‘  \‘3 C039(
LX
— \‘b 3005 z. C. Phase Shift EX. 5: Graph 32 = sin (x — g) over a oneperiod interval.
\( = 3m (x An) \hd\QQT€5 a mr\'ton’c0\ sh'G‘V +0 we ricsh‘c bY ’h ‘ un’ﬁs. \' '= fun CXH'ﬂ \nChCOJCS q mmwnxok 80634 *0 me \ewr h urnb.
ThKS ‘13 b \s Smidouf Qa cosCxhﬁ :6 cosCx+h3
\' Note mm: onto Shi‘H's ﬁne Pcncd 09 «he lane‘hcn . ‘ ‘(T/ mﬁ’s
=s\n( 'rr SWWﬂ V‘ N ‘33 Z
T x A) For aﬁxﬁxmod Eoll'ﬂ mm, arm1g) rm <1 P6003 o? ”1751:1413
z 2 7 EX. 6: Find the amplitude, period, and phase shift of the graph y= 3 sin [2 ( — 5)].
\(1—3 3W3 [1 CX" 1;)1 \’ = a :1anbe «3] a” New Range. [3.31
AmPYrtude = \od = \3\= 5
Period= 2% = 2.3 . '11 com 5531 honzm’rQU )
? z ( £5;ch emd m mm, Pmee Shs¥+ 31609: +0 +he. mgm “0% 33:3: mos;
“ID 2121’ 2:1 — o'ﬁ _ __
\hetéigrﬁ: o 20 , w )
wﬁh m : ,n ”W q. Tl
0+1; 1*: :"z‘trﬂszw Z : "TV/: 3 ETT/H 3 "ﬁ st/H 3% .. ‘5 a 3\\"\EZ CX (Tr/731 EX. 8: Find the period and the phase shift of each function. 11'
a) y— 2cos("3\ —;) ”Romero
\) = Z cos 32>
=2. cos 3;— X'W/Q
QMod .21 = 2:5. mm 311% 2 CE om: +o*he 61%th 3
b 5 so two: C. b) y = 3 sin(1rx + 2) Y = e sme (x Ari/Try] ”Per\cd=2'\_T—. 211:2)
b 11' Phase thQ+ _: 77,“, and?) *0 WE \egi") so 41/“ = C EX. 9: Write an equation for each sinusoidal graph. 8%. 32; BE m ﬂu EWﬁ bx (a. 4:633 bx we emriwwca “:3; Na?  Wyimuwmwamwwm ‘31 xaeQiecﬁzeGi ac: (“03%; Xmmxﬁfg ...
View
Full Document
 Fall '10
 McAveety

Click to edit the document details