INTEGRATGIONf.doc - 对两个算法的一些说明:...

Info icon This preview shows pages 1–2. Sign up to view the full content.

对两个算法的一些说明: Nweton—Cotes 公式的求积余项表明,求积节点 n 越大,对应 的求积公式精度越高,但由于 Nweton—Cotes 公式在 n>8 数值不稳定,因此不能用增加求积节点数的方法来提高计算 精度。实用中常将求积区间 [a b] 分成若干个小区间,然后 在每个小区间上采用数值稳定的 Nweton—Cotes 公式求小区 间上的定积分,最后把所有小区间上的计算结果相加来作为 原定积分的近似值。采用这种方法构造的求积公式就称为复 合求积公式。复合求积公式具有计算简单且可以任意逼近所 求定积分值的特点,这是 Nweton—Cotes 公式一般做不到的。 常用的复合求积公式有复合梯形公式和复合 Simpson 公式。 复合梯形公式 取 等 距节 点 xk=a+kh ,h=(b-a)/n ,k=0,1, .... ,n 将 积 分区 间 [a,b]n 等分,在每个小区间 [xk xk+1] k=0,1,...n-1 上用梯形 公式做近似计算 复合 Simpson 公式 [a,b] 上的等距节点 xk=a+kh ,h=(b-a)/n ,k=0,1,...n ,将 [a,b]n 等分,在每个小区间 [xk xk+1] 上用 Simpson 公式做近 似计算 梯形法: program
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

Image of page 2
This is the end of the preview. Sign up to access the rest of the document.
  • Fall '14
  • LIU YULIANG

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern